记录一些FFT库的使用方法
1.kiss_fft
#include "kiss_fftr.h"
#include "kiss_fft.h"
#include "kiss_fftr.h"
#include<stdint.h>
#define WinLen 9
#define N_FFT 9
#include<iostream>
#include<fstream>
using namespace std;
int main()
{
/* fft */
kiss_fft_cpx cpx_in[WinLen];
kiss_fft_cpx cx_out[N_FFT];
kiss_fft_cfg cfg = kiss_fft_alloc(N_FFT, 0, NULL, NULL);
for (int i = 0; i < WinLen; i++)
{
cpx_in[i].r = i+1;
cpx_in[i].i = 0;
}
kiss_fft(cfg, cpx_in, cx_out);
for (int i = 0; i < N_FFT; i++)
{
cout << cx_out[i].r << "+j"<<cx_out[i].i<<endl;
}
free(cfg);
return 0;
cout << "+j" << endl;
/* fftr */
kiss_fft_scalar cx_in[WinLen];
kiss_fftr_cfg cfg_r = kiss_fftr_alloc(N_FFT, 0, NULL, NULL);
for (int i = 0; i < WinLen; i++)
{
cx_in[i] = i + 1;
}
kiss_fftr(cfg_r, cx_in, cx_out);
for (int i = 0; i < N_FFT; i++)
{
cout << cx_out[i].r << "+j" << cx_out[i].i << endl;
}
free(cfg_r);
/* inverse FFT */
kiss_fftr_cfg icfg = kiss_fftr_alloc(N_FFT, 1, 0, 0);
kiss_fft_cpx freq_data[N_FFT / 2 + 1];
kiss_fft_scalar time_data[N_FFT];
for (int i = 0; i < N_FFT / 2 + 1; i++)
{
freq_data[i].r = cx_out[i].r;
freq_data[i].i = cx_out[i].i;
}
kiss_fftri(icfg, freq_data, time_data);
for (int i = 0; i < N_FFT; i++)
{
cout << "time_data[i]=" << time_data[i]/ N_FFT << endl;
}
free(icfg);
}
2. eigen
eigen的fft模块并不常用
FFT<float> fft;
Matrix < complex<float>, N_FFT, 1> A;
MatrixXcf B(N_FFT, 1);
for (int i = 0; i < N_FFT; i++)
{
A(i) = i+1;
}
for (int k = 0; k<A.cols(); ++k)
fft.fwd(B.col(k),A.col(k));
cout << "B = " << B << endl;
for (int k = 0; k<A.cols(); ++k)
fft.inv(A.col(k), B.col(k));
cout << "A = " << A << endl;
3.GSL
GSL是一个高效的C数值计算库,文档很详细,看官方使用手册就可以使用
一个简单的实数基-2 FFT例子如下
#include <gsl/gsl_fft_real.h>
int test_radix2_real_fft()
{
int i; double data[128];
for (i = 0; i < 128; i++)
{
data[i] = 0.0;
}
for (i = 1; i <= 10; i++)
{
data[i] = 1.0;
}
gsl_fft_real_radix2_transform (data, 1, 128);
return 0;
}
文档中称作为in-place FFT,也就是输出的实部和虚部都是存在原先的数组中,上面的例子中的结果就还是在data数组中,实部跟虚部的存储排列方式如下
complex[0].real = data[0]
complex[0].imag = 0
complex[1].real = data[1]
complex[1].imag = data[n-1]
............... ................
complex[k].real = data[k]
complex[k].imag = data[n-k]
............... ................
complex[n/2].real = data[n/2]
complex[n/2].imag = 0
............... ................
complex[k'].real = data[k] k' = n - k
complex[k'].imag = -data[n-k]
............... ................
complex[n-1].real = data[1]
complex[n-1].imag = -data[n-1]
复数的基-2 FFT使用方式如下:
#include <gsl/gsl_fft_complex.h>
#define REAL(z,i) ((z)[2*(i)])
#define IMAG(z,i) ((z)[2*(i)+1])
int test_complex_fft()
{
int i; double data[2*128];
for (i = 0; i < 128; i++)
{
REAL(data,i) = 0.0; IMAG(data,i) = 0.0;
}
REAL(data,0) = 1.0;
for (i = 1; i <= 10; i++)
{
REAL(data,i) = REAL(data,128-i) = 1.0;
}
for (i = 0; i < 128; i++)
{
printf ("%d %e %e\n", i,
REAL(data,i), IMAG(data,i));
}
printf ("\n\n");
gsl_fft_complex_radix2_forward (data, 1, 128);
for (i = 0; i < 128; i++)
{
printf ("%d %e %e\n", i,
REAL(data,i)/sqrt(128),
IMAG(data,i)/sqrt(128));
}
return 0;
}
关于一些其它的使用方式,如混合基等,官方文档中都有详细的介绍,这里就不赘述了