[leet code] Trapping Rain Water

本文介绍了一种计算雨水收集量的算法,通过寻找数组中能够形成容器的左右边界来确定每个位置可以收集的雨水量。该算法从左到右及从右到左各遍历一次数组,实现了高效计算。

Given n non-negative integers representing an elevation map where the width of each bar is 1, compute how much water it is able to trap after raining.

For example, 
Given [0,1,0,2,1,0,1,3,2,1,2,1], return 6.

===========

Analysis:

Key point of this problem is to find out the logic to compute water trapped in each "container".  

In order to trap the water, there has to be a left bound, a right bound.  My original idea was to calculate the amount of trapped water element by element from left bound of the container till the right bound reached.  For example, trapped water between Array[3] -> Array[7] (example of the problem) is (2-1) + (2-0) + (2-1) = 4.  

From this example, we can also find that left bound of this "container" is the previous highest value (Array[3]=2); right bound of the container is the current highest value (Array[7]=3).  In the next step, we can move the left bound to Array[7], and repeat this computation till the next right bound (i.e. next highest bound) reached.

However, this approach ignore the water trapped in Array[9].  Because when the left bound reached the highest value (assume it is the only highest value) in the array, there would not be right bound anymore to construct a "container".  Therefore, the approach above can only compute the water trapped from left most to the highest value.  

To complet the whole computation, we can simply repeat the approach one  more time from right most to the highest value.  

public class Solution {
    public int trap(int[] A) {
        if (A.length <= 2) return 0;
        
        int singleSum = 0; // one hole
        int totalSum = 0; // result        
        
        // from left to right
        int left = 0;
        for(int i=1; i<A.length; i++){
            if(A[left]>A[i]) singleSum +=A[left]-A[i];
            else {
                totalSum += singleSum;
                left = i;
                singleSum = 0;
            }
        }
        
        // from right to left
        singleSum = 0; // reset singleSum
        int right = A.length-1;
        for (int i=A.length-2; i>=left; i--){
            if(A[right]>A[i]) singleSum += A[right]-A[i];
            else{
                totalSum += singleSum;
                right = i;
                singleSum = 0;
            }
        }
        
        return totalSum;
    }
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值