poj 1330 Nearest Common Ancestors (树链剖分版LCA)

本文介绍了一种求解最近公共祖先(LCA)问题的有效算法,并通过一个具体的编程实例展示了如何实现树链剖分来解决该问题。文章首先定义了树的基本概念,接着详细解释了LCA问题及其解决方案,最后给出了完整的C++代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Description

A rooted tree is a well-known data structure in computer science and engineering. An example is shown below:
poj 1330
In the figure, each node is labeled with an integer from {1, 2,…,16}. Node 8 is the root of the tree. Node x is an ancestor of node y if node x is in the path between the root and node y. For example, node 4 is an ancestor of node 16. Node 10 is also an ancestor of node 16. As a matter of fact, nodes 8, 4, 10, and 16 are the ancestors of node 16. Remember that a node is an ancestor of itself. Nodes 8, 4, 6, and 7 are the ancestors of node 7. A node x is called a common ancestor of two different nodes y and z if node x is an ancestor of node y and an ancestor of node z. Thus, nodes 8 and 4 are the common ancestors of nodes 16 and 7. A node x is called the nearest common ancestor of nodes y and z if x is a common ancestor of y and z and nearest to y and z among their common ancestors. Hence, the nearest common ancestor of nodes 16 and 7 is node 4. Node 4 is nearer to nodes 16 and 7 than node 8 is.

For other examples, the nearest common ancestor of nodes 2 and 3 is node 10, the nearest common ancestor of nodes 6 and 13 is node 8, and the nearest common ancestor of nodes 4 and 12 is node 4. In the last example, if y is an ancestor of z, then the nearest common ancestor of y and z is y.

Write a program that finds the nearest common ancestor of two distinct nodes in a tree.

Input

The input consists of T test cases. The number of test cases (T) is given in the first line of the input file. Each test case starts with a line containing an integer N , the number of nodes in a tree, 2<=N<=10,000. The nodes are labeled with integers 1, 2,…, N. Each of the next N -1 lines contains a pair of integers that represent an edge –the first integer is the parent node of the second integer. Note that a tree with N nodes has exactly N - 1 edges. The last line of each test case contains two distinct integers whose nearest common ancestor is to be computed.

Output

Print exactly one line for each test case. The line should contain the integer that is the nearest common ancestor.

Sample Input

2
16
1 14
8 5
10 16
5 9
4 6
8 4
4 10
1 13
6 15
10 11
6 7
10 2
16 3
8 1
16 12
16 7
5
2 3
3 4
3 1
1 5
3 5

Sample Output

4
3

题意

题目给出多组数据,每组数据包含一棵节点数为N、边总数为N-1的树,以及两个节点(没错每组只有一个询问),要求这两个节点的LCA。

题解

这题实在是太裸了,单纯想重温一下如何打树链剖分和LCA练手用。不过它虽然简单但还是有需要注意的地方:树的根节点是不固定的,需要找到一个入度为0的点作为根。

代码

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 10005;

struct Edge {
    int v, next;
} edge[2 * N];

bool vis[N];
int T, n, a, b;
int num, head[N];
int indexx, dep[N], fa[N], son[N], siz[N], top[N], tag[N];

void zero() {
    num = 0, indexx = 0;
    memset(fa, 0, sizeof(fa));
    memset(son, -1, sizeof(son));
    memset(vis, 0, sizeof(vis));
    memset(siz, 0, sizeof(siz));
    memset(dep, 0, sizeof(dep));
    memset(head, 0, sizeof(head));
}

void add(int u, int v) {
    num ++;
    edge[num].v = v;
    edge[num].next = head[u];
    head[u] = num;
}

void dfs1(int u, int f, int d) {
    fa[u] = f;
    dep[u] = d;
    siz[u] = 1;
    for(int i = head[u]; i; i = edge[i].next) {
        int v = edge[i].v;
        if(v == f) continue;
        dfs1(v, u, d + 1);
        siz[u] += siz[v];
        if(son[u] == -1 || siz[son[u]] < siz[v])
            son[u] = v;
    }
}

void dfs2(int u, int tp) {
    top[u] = tp;
    tag[u] = ++ indexx;
    if(son[u] == -1) return ;
    dfs2(son[u], tp);
    for(int i = head[u]; i; i = edge[i].next) {
        int v = edge[i].v;
        if(v == son[u] || v == fa[u]) continue;
        dfs2(v, v);
    }
}

int query(int a, int b) {
    while(1) {
        if(top[a] == top[b]) {
            if(dep[a] < dep[b]) return a;
            return b;
        }
        else if(dep[top[a]] >= dep[top[b]])
            a = fa[top[a]];
        else b = fa[top[b]];
    }
}

int main() {
    scanf("%d", &T);
    while(T --) {
        zero();
        scanf("%d", &n);
        for(int i = 1; i < n; i ++) {
            int u, v;
            scanf("%d %d", &u, &v);
            vis[v] = 1;
            add(u, v);
            add(v, u);
        }
        int r;
        for(int i = 1; i <= n; i ++)
            if(! vis[i]) r = i;
        scanf("%d %d", &a, &b);
        dfs1(r, 0, 1); dfs2(r, 1);
        printf("%d\n", query(a, b));
    }
    return 0;
}
内容概要:论文提出了一种名为 CLE-TFE的加密流量分类框架,通过监督对比学习和多任务学习同时处理数据包级和流级分类任务。主要创新点包括:1)使用监督对比学习增强数据包和流的表示;2)在字节级流量图上进行图数据增强以捕获细粒度语义不变特征;3)提出跨级多任务学习,在单一模型中同时完成两个分类任务。实验表明,CLE-TFE在两个任务上均取得最佳性能,且计算开销仅为预训练模型(如 ET-BERT)的约 1/14。此外,论文还详细介绍了 CLE-TFE框架的各个组件实现,包括字节级图编码器、时序融合编码器、对比学习头等,并展示了训练流程示例和实验结果。 适合人群:具备一定机器学习和深度学习基础的研究人员、工程师,尤其是从事网络安全、流量分析等相关领域的专业人士。 使用场景及目标:①研究和开发高效的加密流量分类系统;②理解监督对比学习和多任务学习在实际问题中的应用;③探索如何通过图数据增强和双层次对比学习提升模型性能。 阅读建议:由于该论文涉及较多的技术细节和数学推导,建议读者先通读全文掌握整体框架,再深入研究各模块的具体实现。在实践中可以尝试复现论文提供的代码,并根据自己的数据集调整模型结构和超参数。同时,注意理解监督对比学习和多任务学习的协同机制,这对于提升模型性能至关重要。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值