问题描述
Given an integer array with all positive numbers and no duplicates, find the number of possible combinations that add up to a positive integer target.
Example:
nums = [1, 2, 3] target = 4 The possible combination ways are: (1, 1, 1, 1) (1, 1, 2) (1, 2, 1) (1, 3) (2, 1, 1) (2, 2) (3, 1) Note that different sequences are counted as different combinations. Therefore the output is 7.
Follow up:
What if negative numbers are allowed in the given array?
How does it change the problem?
What limitation we need to add to the question to allow negative numbers?
Credits:
Special thanks to @pbrother for adding this problem and creating all test cases.
问题分析:
所给的例子中不同的序列顺序都计算在其中。子问题为求解target序列数,而target可以分解为更小数的和,分别求出更小数的序列数,求和即为target序列数。存在很多种分解方式,而由于所给的nums数组是无重复的,所以直接将target分解为每个num加上一个数,这样dp[target]+=dp[target-nums[i]],例子中已经给出了递推公式。我们需要一个一维数组dp,其中dp[i]表示目标数为i的解的个数,然后我们从1遍历到target,对于每一个数i,遍历nums数组,如果i>=x, dp[i] += dp[i - x]。代码如下:
public int combinationSum4(int[] nums, int target) {
int n=nums.length;
int[]dp=new int [target+1];
dp[0]=1;
for(int i=1;i<=target;i++){
for(int j=0;j<n;j++){
if(i>=nums[j]){
dp[i]+=dp[i-nums[j]];
}
}
}
return dp[target];
}