1.论文 - Learning both Weights and Connections for Efficient Neural Networks
https://xmfbit.github.io/2018/03/14/paper-network-prune-hansong/
2.论文 - Learning Structured Sparsity in Deep Neural Networks
https://xmfbit.github.io/2018/02/24/paper-ssl-dnn/
3.论文记录-Pruning Filters For Efficient ConvNets
https://blog.youkuaiyun.com/u013082989/article/details/77943240
4.exploring the efficacy of pruning for model compression论文笔记
https://blog.youkuaiyun.com/liujianlin01/article/details/80816000
5.模型压缩:Networks Slimming-Learning Efficient Convolutional Networks through Network Slimming
https://blog.youkuaiyun.com/u011995719/article/details/78788336
https://blog.youkuaiyun.com/u014380165/article/details/79969132
6.论文笔记:ThiNet——一种filter级的模型裁剪算法
https://blog.youkuaiyun.com/u014380165/article/details/77763037
https://blog.youkuaiyun.com/wspba/article/details/77427960
https://www.cnblogs.com/zhonghuasong/p/7648967.html
7.RETHINKING THE VALUE OF NETWORK PRUNING
https://www.jiqizhixin.com/articles/2018-10-22-6
https://blog.youkuaiyun.com/zhangjunhit/article/details/83506306