和刚刚结束的2017华为软件精英挑战赛相比,中兴的题目不难,花了两天时间随便搞了一下(其实也没多长时间,因为是周末,还打了农药),没什么意思,结果刚刚揭晓,58分,评价是“算法尚可,代码一般”,GG,写的太水,大佬莫笑~
赛题:
最强大脑中的收官蜂巢迷宫变态级挑战,相信大家都叹为观止!最强大脑收官战打响后,收视率节节攀升,就连蚁后也不时出题难为一下她的子民们。在动物世界中,称得上活地图的,除了蜜蜂,蚂蚁当仁不让。在复杂多变的蚁巢中, 蚂蚁总是能以最快、最高效的方式游历在各个储藏间(存储食物)。今天,她看完最新一期节目,又发布了一项新任务:小蚁同学,我需要玉米库的玉米,再要配点水果,去帮我找来吧。小蚁正准备出发,蚁后又说:哎呀,回来,我还没说完呢,还有若干要求如下:
1.小蚁同学,你需要尽可能以最少的花费拿到食物(附件图中路线上的数值表示每两个储物间的花费);
2.小蚁同学,你最多只能经过9个储藏间拿到食物(包含起止两个节点,多次通过同一节点按重复次数计算);
3.小蚁同学,你必须经过玉米间,水果间(附件图中标绿色节点);
4.别忘了,食蚁兽也在路上活动呢,一旦与食蚁兽相遇,性命危矣!不过小蚁微信群公告已经公布了敌人信息(附件图中标红色路段);
5.最后,千万别忘了,还有两段路是必须经过的,那里有我准备的神秘礼物等着你呢(附件图中标绿色路段)。
这下小蚁犯难了,这和它们平时找食物的集体活动规则不一样嘛,看来这次需要单独行动了。要怎么选路呢?小蚁经过一番苦思冥想,稿纸堆了一摞,啊,终于找到了!亲爱的同学们,你们能否也设计一种通用的路径搜索算法,来应对各种搜索限制条件,找到一条最优路径,顺利完成蚁后布置的任务呢?
注:
1、蚁巢,有若干个储藏间(附件图中圆圈表示),储藏间之间有诸多路可以到达(各储藏间拓扑图见附件);
2、节点本身通行无花费;
3、该图为无向图,可以正反两方向通行,两方向都会计费,并且花费相同;
4、起止节点分别为附件图中S点和E点。
5、最优路径:即满足限制条件的路径。
算法思路:
贪心算法求解初始解+分段求解最短路+模拟退火算法逐步寻优(实践证明,对于这个对这个问题,贪心算法求出的初始解基本接近最优解,所以说这个比赛很水啦。。。。)
源代码:
/************************************************************
*
* Shortest Path Search for ZTE Fantastic Algorithm
* Author: chyeer
* Datetime: 2017-05-02
* Description: multiple constrainted shortest path search
* based on Shortested Path Faster Algorithm and
* Simulated Anneling Algorithm
*
************************************************************/
#ifndef ZTE_H
#define ZTE_H
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
using namespace std; namespace pan{ const int maxn = 1001; const int INF = 1<<10; const int MAX_LINE_LEN = 50000; struct edge //edge { int to; int cost; }; struct node { int from; int to; }; extern vector
myV[maxn]; // adjacecy list used for topo structure of graph extern vector
constraints; // storage for multiple constraints extern vector
group; // storage for combination of multiple constraints extern vector
path; // storage for shortest path extern int numNode, numEdge; // vertexes, edges extern int minPath[maxn]; // shortest path extern int source[maxn]; // source[a]=b, the node before a is b extern int start, End; // srouce node, sink node extern int S, E; // Source Node: S, End Node: E extern bool inQ[maxn]; // in queue or not extern int wholeDis; // storage of the miniCost for the shortest path extern int distance; // distance between two nodes extern vector
mustPassedNode; // Node set that must be passed extern vector
> forbidPassedEdge; // Edge set that can not be passed extern vector
> mustPassedEdge; // Edge set that must be passed void LoadDataFromFile(const char* filename); // load basic graph data void loadConstraints(); // used for adding constraints void inputItial(); // input data from screen void output(int start, int end); // compute shortest path void SPFA(int start, int end); // shortest path faster algorithm void greedyAlgorithmForFindingInitialSolution(vector
& constraints, vector
& group); // greedy algorithm for finding initial solution void findInitialSolutionForSimulatedAnnealing(vector
& constraints, vector
& group); // get initial solution for simulated anneling void simulatedAnnealingForGetNewSolution(vector
& constraints, vector
& group); // get a new solution for simulated anneling void simulatedAnnealingForFindShortestPath(vector
& constraints, vector
& group); // simulated anneling algorithm void findShortestPath(vector
& group); // find shortest path void SaveDataToFile(const char* filename, const vector
& path); } #endif // ZTE_H
/************************************************************
*
* Shortest Path Search for ZTE Fantastic Algorithm
* Author: chyeer
* Datetime: 2017-05-02
* Description: multiple constrainted shortest path search
* based on Shortested Path Faster Algorithm and
* Simulated Anneling Algorithm
*
************************************************************/
#include "zte.h"
using namespace pan;
vector
pan::myV[maxn]; //adjacecy list used for topo structure of graph
vector
pan::constraints; // storage for multiple constraints
vector
pan::group; // storage for combination of multiple constraints
vector
pan::path; // storage for shortest path
int pan::numNode, pan::numEdge; //vertexes, edges
int pan::minPath[maxn]; // shortest path
int pan::source[maxn]; // source[a]=b, the node before a is b
int pan::start, pan::End; //srouce node, sink node
int pan::S, pan::E; // Source Node: S, End Node: E
bool pan::inQ[maxn]; // in queue or not
int pan::wholeDis; // storage of the miniCost for the shortest path
int pan::distance; // distance between two nodes
vector
pan::mustPassedNode; // Node set that must be passed vector
> pan::forbidPassedEdge; // Edge set that can not be passed vector
> pan::mustPassedEdge; // Edge set that must be passed void pan::LoadDataFromFile(const char *filename) { FILE *fp = fopen(filename, "r"); char *topo[MAX_LINE_LEN]; // Storage for all lines in file. if (fp == NULL) { printf("Fail to open file %s, %s.\n", filename, strerror(errno)); } printf("Open file %s OK.\n", filename); char line[MAX_LINE_LEN + 2]; unsigned int cnt = 0; // cnt: count line number of file. while (!feof(fp)) { line[0] = 0; if (fgets(line, MAX_LINE_LEN + 2, fp) == NULL) continue; if (line[0] == 0) continue; topo[cnt] = (char *)malloc(MAX_LINE_LEN + 2); strncpy(topo[cnt], line, MAX_LINE_LEN + 2 - 1); // copy file to topo. topo[cnt][MAX_LINE_LEN + 1] = 0; cnt++; } fclose(fp); printf("There are %d lines in file %s.\n", cnt, filename); int mustVertexNum, forbidEdgeNum, mustEdgeNum; int index = 0; sscanf(topo[index], "%d%d%d%d%d", &S, &E, &mustVertexNum, &forbidEdgeNum, &mustEdgeNum); index += 2; int vertex; for(int i=0; i
tmp; for(int i=0; i
>::iterator iter; for(iter=forbidPassedEdge.begin(); iter!=forbidPassedEdge.end(); iter++) { vector
::iterator it; for(it=myV[iter->first].begin(); it!=myV[iter->first].end(); it++) { if(it->to == iter->second) { //it->cost = INF; //delete forbid edge myV[iter->first].erase(it); //cout << it->to << " " << it->cost << endl; break; } } for(it=myV[iter->second].begin(); it!=myV[iter->second].end(); it++) { if(it->to == iter->first) { //it->cost = INF; // delete forbid edge myV[iter->second].erase(it); //cout << it->to << " " << it->cost << endl; break; } } } wholeDis = 0; } void pan::loadConstraints() { node tmp; tmp.from = 14; tmp.to = 13; constraints.push_back(tmp); tmp.from = 12; tmp.to = -1; constraints.push_back(tmp); tmp.from = 7; tmp.to = -1; constraints.push_back(tmp); tmp.from = 4; tmp.to = 2; constraints.push_back(tmp); vector
::iterator it; for(it=constraints.begin(); it!=constraints.end(); it++) { group.push_back(it->from); if(~it->to) group.push_back(it->to); } #if 0 for(size_t i=0; i
& constraints, vector
& group) { size_t index_out, index_in; int cost = INF; size_t location = 0; for(size_t i=0; i
::iterator itera; for(itera=constraints.begin(); itera!=constraints.end(); itera++) { group.push_back(itera->from); if(~itera->to) group.push_back(itera->to); } #if 0 for(size_t i=0; i
& constraints, vector
& group) { constraints.clear(); group.clear(); vector
::iterator iter; node tmp; for(iter=mustPassedNode.begin(); iter!=mustPassedNode.end(); iter++) { bool IN = false; for(size_t i=0; i
>::iterator it; for(it=mustPassedEdge.begin(); it!=mustPassedEdge.end(); it++) { tmp.from = it->first; tmp.to = it->second; constraints.push_back(tmp); } vector
::iterator itera; for(itera=constraints.begin(); itera!=constraints.end(); itera++) { group.push_back(itera->from); if(~itera->to) group.push_back(itera->to); } greedyAlgorithmForFindingInitialSolution(constraints, group); #if 0 for(size_t i=0; i
& constraints, vector
& group) { group.clear(); if(rand() % 2) { size_t index_x, index_y; index_x = rand() % constraints.size(); index_y = rand() % constraints.size(); while(index_x == index_y) { index_x = rand() % constraints.size(); index_y = rand() % constraints.size(); } swap(constraints[index_x], constraints[index_y]); } else { size_t index; while(1) { index = rand() % constraints.size(); if(~constraints[index].from && ~constraints[index].to) { swap(constraints[index].from, constraints[index].to); break; } } } vector
::iterator it; for(it=constraints.begin(); it!=constraints.end(); it++) { //if(rand() % 2) // swap(it->from, it->to); if(~it->from) group.push_back(it->from); if(~it->to) group.push_back(it->to); } #if 0 while(!tmp.empty()) { index = rand() % tmp.size(); tmpNode = tmp[index]; if(rand() % 2) swap(tmpNode.from, tmpNode.to); if(~tmpNode.from) group.push_back(tmpNode.from); if(~tmpNode.to) group.push_back(tmpNode.to); tmp.erase(tmp.begin()+index); } #endif #if 0 vector
::iterator iter; for(iter=group.begin(); iter!=group.end()-1; iter++) { cout << *iter << " "; } cout << *(group.end()-1) << endl; #endif } // kernel algorithm ---- Simulated Anneling Algorithm void pan::simulatedAnnealingForFindShortestPath(vector
& constraints, vector
& group) { double speed = 0.9999, T = 1000, t_min = 0.001; struct timeval t0, t1; gettimeofday(&t0, NULL); findInitialSolutionForSimulatedAnnealing(constraints, group); // find initial solution cout << "Initial cost: " << wholeDis << endl; int minCost = wholeDis; // cost of initial solution int bestCost = wholeDis; vector
bestPath(path); vector
tmpConstraints(constraints); vector
bestConstraints(constraints); vector
tmpGroup; vector
bestGroup(group); int delta; int iteration = 0; while(T > t_min) { simulatedAnnealingForGetNewSolution(tmpConstraints, tmpGroup); constraints.assign(tmpConstraints.begin(), tmpConstraints.end()); group.assign(tmpGroup.begin(), tmpGroup.end()); findShortestPath(tmpGroup); delta = wholeDis - minCost; if(delta < 0) { //cout << "better: " << endl; tmpConstraints.assign(constraints.begin(), constraints.end()); tmpGroup.assign(group.begin(), group.end()); if(wholeDis < bestCost) { bestConstraints.assign(constraints.begin(), constraints.end()); bestGroup.assign(group.begin(), group.end()); bestCost = wholeDis; //cout << "bestCost: " << bestCost << endl; } minCost = wholeDis; //if(minCost == 13) // break; } else { if((int)(exp(delta/T)*100) <= (rand() % 101)) { //cout << "worse: " << endl; tmpConstraints.assign(constraints.begin(), constraints.end()); tmpGroup.assign(group.begin(), group.end()); } } T *= speed; iteration++; if(iteration == 10) break; } gettimeofday(&t1, NULL); double timeUse = t1.tv_sec - t0.tv_sec + (t1.tv_usec - t0.tv_usec)/1000000.0; findShortestPath(bestGroup); minCost = wholeDis; bestPath.assign(path.begin(), path.end()); #if 0 int iteration = 100; while(iteration) { simulatedAnnealingForGetNewSolution(constraints, group); findShortestPath(group); //cout << "wholeDis: " << wholeDis << " " << "minCost: " << minCost << endl; if(wholeDis < minCost) { bestPath.assign(path.begin(), path.end()); minCost = wholeDis; cout << "Cost: " << minCost << endl; } iteration--; } #endif cout << "The minimum cost is: " << minCost << endl; cout << "Total vertex num: " << bestPath.size() << endl; cout << "The best path is: "; vector
::iterator it; for(it=bestPath.begin(); it!=bestPath.end()-1; it++) { cout << *it << "-->"; } cout << *it << endl; //cout << "Total iteration num: " << iteration << endl; cout << "Time elapse: " << timeUse << " s" << endl; } void pan::findShortestPath(vector
& group) { wholeDis = 0; path.clear(); if(!group.empty()) { SPFA(S, group[0]); for(size_t i=0; i
>::iterator iter; for(iter=mustPassedEdge.begin(); iter!=mustPassedEdge.end(); iter++) { if(group[i] == iter->first && group[i+1] == iter->second) { IN = true; //add path when the edge must be passed //path.push_back(group[i]); path.push_back(group[i+1]); //add cost vector
::iterator it; for(it=myV[group[i]].begin(); it!=myV[group[i]].end(); it++) { if(it->to == group[i+1]) { wholeDis += it->cost; break; } } break; } if(group[i] == iter->second && group[i+1] == iter->first) { IN = true; //add path when the edge must be passed path.push_back(group[i+1]); //path.push_back(group[i]); //add cost vector
::iterator it; for(it=myV[group[i+1]].begin(); it!=myV[group[i]].end(); it++) { if(it->to == group[i]) { wholeDis += it->cost; break; } } break; } } if(!IN) SPFA(group[i], group[i+1]); } SPFA(group[group.size()-1], E); } #if 0 cout << "Minimum Cost: " << wholeDis << endl; cout << "Path: "; vector
::iterator it; for(it=path.begin(); it!=path.end()-1; it++) { cout << *it << "-->"; } cout << *it << endl; #endif } void pan::inputItial() { int i, from, to, cost; wholeDis = 0; for(i=0; i
s; s.push(tmp); while(source[tmp]!=start) { tmp=source[tmp]; s.push(tmp); } while(!s.empty()) { //printf("-->%d",s.top()); path.push_back(s.top()); s.pop(); } //printf("\n"); //printf("Total cost : %d\n\n",minPath[end]); distance = minPath[end]; wholeDis += minPath[end]; } } void pan::SPFA(int start, int end) //Shortest Path Faster Algorithm { memset(inQ, false, sizeof(inQ)); inQ[start] = true; for(int j=0; j
myQ; myQ.push(start); int now, to, cost; while(!myQ.empty()) { now=myQ.front(); myQ.pop(); for(size_t k=0; k
cost) { source[to] = now; //record the source of to: now minPath[to] = cost; if(!inQ[to]) { inQ[to] = true; myQ.push(to); } } } inQ[now] = false; } output(start, end); } void pan::SaveDataToFile(const char *filename, const vector
& path) { fstream fs; fs.open(filename, ios_base::out); fs << path.size() << endl << endl; for(size_t i=0; i
/************************************************************
*
* Shortest Path Search for ZTE Fantastic Algorithm
* Author: chyeer
* Datetime: 2017-05-02
* Description: multiple constrainted shortest path search
* based on Shortested Path Faster Algorithm and
* Simulated Anneling Algorithm
*
************************************************************/
#include "zte.h"
#include
using namespace pan;
int main(int argc, char *argv[])
{
#if 0
freopen("C:\\Users\\Administrator\\Desktop\\case4.txt", "r+" , stdin);
while(scanf("%d%d",&numNode,&numEdge)==2,numNode || numEdge)
{
inputItial();
while(scanf("%d%d",&start,&End)==2,start!=-1 && End!=-1)
{
SPFA(start, End);
}
}
loadConstraints();
findShortestPath(group);
simulatedAnnealingForFindShortestPath(constraints, group);
#endif
srand(time(NULL));
//if(argc == 1)
// cout << "Not enough argument!" << endl;
LoadDataFromFile("C:\\Users\\Administrator\\Desktop\\case4.txt");
simulatedAnnealingForFindShortestPath(constraints, group);
//findInitialSolutionForSimulatedAnnealing(constraints, group);
//greedyAlgorithmForFindingInitialSolution(constraints, group);
SaveDataToFile("C:\\Users\\Administrator\\Desktop\\result0.txt", path);
system("pause");
return 0;
}
实验:
官网样例(18节点):必经点:2 必经边:2
运行结果:

样例1(100节点):必经点:10 必经边:5
运行结果:

样例2(300节点):必经点:30 必经边:15
运行结果:

样例3(1000节点):必经点:100 必经边:50
运行结果:

注:以上用例是ShooterIT大神提供,初写博客,太水,大佬勿喷~