Given n non-negative integers a1, a2, ..., an, where each represents a point at coordinate (i, ai). n vertical lines are drawn such that the two endpoints of line i is at (i, ai) and (i, 0). Find two lines, which together with x-axis forms a container, such that the container contains the most water.
分析:一般的思路是时间复杂度为O(n^2)的两层循环,选出最大的:
public int maxArea(int[] height) {
int n = height.length;
int res = 0;
for(int i = 0; i < n-1; i++){
for(int j = i+1; j < n; j++){
int area = Math.min(height[i], height[j]) * (j - i);
res = (area > res) ? area : res;
}
}
return res;
}
但是会超时,看到这样一个贪心的方法:
public class Solution {
public int maxArea(int[] height) {
int left = 0, right = height.length - 1;
int maxArea = 0;
while (left < right) {
maxArea = Math.max(maxArea, Math.min(height[left], height[right])
* (right - left));
if (height[left] < height[right])
left++;
else
right--;
}
return maxArea;
}
}
贪心的证明:假如A[0] < A[n - 1],那么对于任意k(k < n - 1),A[0]到A[k]能盛的水一定小于A[0]到A[n - 1]的盛水,所以我们只要关注A[1]到A[n - 1]的最大盛水量就好了。综上,每次内移小的一方,同时跟踪记录最大值。