数据集在资源处可下载。
将数据集下载到本地以后,存在代码的/data路径下。
路径问题,可以通过下面语句进行查询,并判断
import hashlib
import os
import tarfile
import zipfile
import pandas as pd
import requests
import torch
from torch import nn
from d2l import torch as d2l
import sys
path = os.path.abspath(os.path.dirname(sys.argv[0]))
print("path", path)
train_data = pd.read_csv(path + "/data/kaggle_house_pred_train.csv")
test_data = pd.read_csv(path + "/data/kaggle_house_pred_test.csv")
print(train_data.shape)
print(test_data.shape)
# 查看数据集样式
print(train_data.iloc[0:4, [0, 1, 2, 3, -3, -2, -1]])
# 将第一列特征ID,即标签,删除,然后拼接训练集和测试集
all_feature = pd.concat((train_data.iloc[:, 1:-1], test_data.iloc[:, 1:]))
# 处理缺失值,将缺失值替换为相应特征值。通过将特征重新缩放到零均值和单位方差标准化数据特征
# 获取数值型特征的 index
numeric_features = all_feature.dtypes[all_feature.dtypes != 'object'].index
print(numeric_features)
# 将所有数值特征进行缩放处理。把数值列的某一数值减去全列的均值然后除以方差
all_feature[numeric_features] = all_feature[numeric_features].apply(
lambda x: (x - x.mean()) / (x.std())
)
print(all_feature[numeric_features])
# 将没有采样的部分全部变为0
all_feature[numeric_features] = all_feature[numeric_features].fillna(0)
# 处理离散值。使用onehot编码替换
all_feature = pd.get_dummies(all_feature, dummy_na=True)
print(all_feature.shape)
# 从pd格式中提取np格式,并将其转换为张量模式
n_train = train_data.shape[0]
train_features = torch.tensor(all_feature[:n_train].values, dtype=torch.float32)
test_features = torch.tensor(all_feature[n_train:].values, dtype=torch.float32)
train_labels = torch.tensor(train_data.SalePrice.values.reshape(-1, 1), dtype=torch.float32)
print("train_feature", train_features.shape)
print("test_features", test_features.shape)
# 训练
loss = nn.MSELoss()
in_features = train_features.shape[1]
def get_net():
# 单层线性回归
net = nn.Sequential(nn.Linear(in_features, 1))
return net
# 用价格预测的对数来衡量差异。(真实值-相对误差)/真实值
# 对比较大的正值做回归时,使用log
def log_rmse(net, features, labels):
clipped_preds = torch.clamp(net(features), 1, float('inf'))
# 将预测值做log,真值做log,然后回归
rmse = torch.sqrt(loss(torch.log(clipped_preds), torch.log(labels)))
return rmse.item()
def train(net, train_features, train_labels, test_features, test_labels, num_epochs, learning_rate, weight_decay,
batch_size):
train_ls, test_ls = [], []
train_iter = d2l.load_array((train_features, train_labels), batch_size)
# adam学习率的应用范围较为广
optimizer = torch.optim.Adam(net.parameters(), lr=learning_rate, weight_decay=weight_decay)
for epoch in range(num_epochs):
for X, y in train_iter:
optimizer.zero_grad()
l = loss(net(X), y)
l.backward()
optimizer.step()
train_ls.append(log_rmse(net, train_features, train_labels))
if test_ls.append(log_rmse(net, train_features, train_labels)):
test_ls.append(log_rmse(net, test_features, test_labels))
return train_ls, test_ls
# k折交叉验证
# 给定k折,切分训练集和验证集
def get_k_fold_data(k, i, X, y):
assert k > 1
# 每一折的大小为X的形状除以k
fold_size = X.shape[0] // k
X_train, y_train = None, None
for j in range(k):
# idx为第j折的样本
idx = slice(j * fold_size, (j + 1) * fold_size)
X_part, y_part = X[idx, :], y[idx]
# 第i各部分作为验证集
if j == i:
X_vaild, y_vaild = X_part, y_part
elif X_train is None:
X_train, y_train = X_part, y_part
else:
X_train = torch.cat([X_train, X_part], 0)
y_train = torch.cat([y_train, y_part], 0)
# print("X_train.shape", X_train.shape)
# print("y_train", y_train.shape)
# print("X_vaild", X_vaild.shape)
# print("y_vaild", y_vaild.shape)
return X_train, y_train, X_vaild, y_vaild
# 做k折验证,返回训练和验证的K折预测平均值
def k_fold(k, X_train, y_train, num_epochs, learning_rate, weight_decay, batch_size):
train_l_sum, valid_l_sum = 0, 0
for i in range(k):
print("i=", i + 1)
# print("获取k折切分数据")
data = get_k_fold_data(k, i, X_train, y_train)
# print("获取网络")
net = get_net()
# print("预训练")
train_ls, valid_ls = train(net, *data, num_epochs, learning_rate, weight_decay, batch_size)
train_l_sum += train_ls[-1]
valid_l_sum += valid_ls[-1]
if i == 0:
d2l.plot(list(range(1, num_epochs + 1)), [train_ls, valid_ls], xlabel='epoch', ylabel='rmse',
xlim=[1, num_epochs], legend=['train', 'valid'], yscale='log')
print(f'fold {i + 1}, train log rmse {float(train_ls[-1])}'
f'fold log rmse {float(valid_ls[-1]):f}')
return train_l_sum / k, valid_l_sum / k
print("+++++++++++++++++++++++++K折交叉验证++++++++++++++++++++++++")
k, num_epochs, lr, weight_decay, batch_size = 5, 100, 5, 0, 64
train_l, valid_l = k_fold(k, train_features, train_labels, num_epochs, lr, weight_decay, batch_size)
print(f'{k}-折验证:平均训练log rmse:{float(train_l):f},'
f'平均验证log rmse:{float(valid_l):f}')
import numpy as np
# 提交结果
def train_and_pred(train_features, test_feature, train_labels, test_data, num_epochs, lr, weight_decay, batch_size):
net = get_net()
train_ls, _ = train(net, train_features, train_labels, None, None,
num_epochs, lr, weight_decay, batch_size)
d2l.plot(np.arange(1, num_epochs + 1), [train_ls], xlabel='epoch',
ylabel='log rmse', xlim=[1, num_epochs], yscale='log')
print(f'训练log rmse:{float(train_ls[-1]):f}')
# 将网络应用于测试集。
preds = net(test_features).detach().numpy()
# 将其重新格式化以导出到Kaggle
test_data['SalePrice'] = pd.Series(preds.reshape(1, -1)[0])
submission = pd.concat([test_data['Id'], test_data['SalePrice']], axis=1)
submission.to_csv('submission.csv', index=False)
train_and_pred(train_features, test_features, train_labels, test_data,
num_epochs, lr, weight_decay, batch_size)