【论文笔记】OverFeat
原文见OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks:
- 新的网络结构:两种网络模型
- 多尺度应用
- classification, localization, detection
Classification
Model Design and Training
fast model
| Layer | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
|---|---|---|---|---|---|---|---|---|
| Stage | conv + max | conv + max | conv | conv | conv + max | full | full | full |
| channels | 96 | 256 | 512 | 1024 | 1024 | 3072 | 4096 | 1000 |
| Filter size | 11x11 | 5x5 | 3x3 | 3x3 | 3x3 | - | - | - |
| Conv. stride | 4x4 | 1x1 | 1x1 | 1x1 | 1x1 | - | - | - |
| Pooling size | 2x2 | 2x2 | - | - | 2x2 | - | - | - |
| Pooling stride | 2x2 | 2x2 | - | - | 2x2 | - | - | - |
| Zero-Padding size | - | - | 1x1x1x1 | 1x1x1x1 | 1x1x1x1 | - | - | - |
| Spatial input size | 231x231 | 28x28 | 12x12 | 12x12 | 12x12 | 6x6 | 1x1 | 1x1 |
accurate model
| Layer | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
|---|---|---|---|---|---|---|---|---|---|
| Stage | conv + max | conv + max | conv | conv | conv | conv + max | full | full | full |
| channels | 96 | 256 | 512 | 512 | 1024 | 1024 | 4096 | 4096 | 1000 |
| Filter size | 7x7 | 7x7 | 3x3 | 3x3 | 3x3 | 3x3 | - | - | - |
| Conv. stride | 2x2 | 1x1 | 1x1 | 1x1 | 1x1 | 1x1 | - | - | - |
| Pooling size | 3x3 | 2x2 | - | - | - | 3x3 | - | - | - |
| Pooling stride | 3x3 | 2x2 | - | - | - | 3x3 | - | - | - |
| Zero-Padding size | - | - | 1x1x1x1 | 1x1x1x1 | 1x1x1x1 | 1x1x1x1 | - | - | - |
| Spatial input size | 221x221 | 36x36 | 15x15 | 15x15 | 15x15 | 15x15 | 5x5 | 1x1 | 1x1 |
本文是对OverFeat论文的笔记,探讨了一种新的深度学习网络结构,该结构在分类、定位和检测任务中表现出色。文章详细介绍了模型设计和训练过程,包括快速模型和精确模型的实现。
1453

被折叠的 条评论
为什么被折叠?



