#coding=utf-8
import numpy as np
import sys,os
caffe_root='/home/ls/caffe-master/' #根目录
sys.path.insert(0, caffe_root + 'python')
import caffe
os.chdir(caffe_root)
caffe.set_device(0)
caffe.set_mode_gpu()
root='/home/ls/caffe-master/'
deploy= root+'myself/deploy.prototxt' #deploy文件
caffe_model=root+'myself/caffenet_train_iter_15000.caffemodel' #训练好的 caffemodel
mean_file=root+'myself/imagenet_mean.npy'
img_txt=root+'myself/test/test.txt' #随机找的一张待测图片
#labels_filename =root+'synset_words.txt' #类别名称文件,将数字标签转换回类别名称
caffe.set_device(0)
caffe.set_mode_gpu()
net = caffe.Net(deploy,caffe_model,caffe.TEST) #加载model和network
#图片预处理设置
transformer = caffe.io.Transformer({'data': net.blobs['data'].data.shape}) #设定图片的shape格式(1,3,28,28)
transformer.set_transpose('data', (2,0,1)) #改变维度的顺序,由原始图片(28,28,3)变为(3,28,28)
transformer.set_mean('data', np.load(mean_file).mean(1).mean(1)) #减去均值,前面训练模型时没有减均值,这儿就不用
transformer.set_raw_scale('data', 255) # 缩放到【0,255】之间
transformer.set_channel_swap('data', (2,1,0)) #交换通道,将图片由RGB变为BGR
transformer.set_image_dim=(160,160)
fp=open(img_txt,'a+')
lines=fp.readlines()
for line in lines:
im=caffe.io.load_image(line.strip('\n')) #加载图片
net.blobs['data'].data[...] = transformer.preprocess('data',im) #执行上面设置的图片预处理操作,并将图片载入到blob中
#执行测试
out = net.forward()
# labels = np.loadtxt(labels_filename, str, delimiter='\t') #读取类别名称文件
#prob= net.blobs['Softmax1'].data[0].flatten() #取出最后一层(Softmax)属于某个类别的概率值,并打印
#print prob
#order=prob.argsort()[0] #将概率值排序,取出最大值所在的序号
#print 'the class is:',labels[order] #将该序号转换成对应的类别名称,并打印
# top_k = net.blobs['prob'].data[0].flatten().argsort()[-1:-2:-1]
# for i in np.arange(top_k.size):
# print top_k[i], labels[top_k[i]]
# fp.write(line.strip('\n')+' '+labels[top_k[i]]+'\n')
output_prob = output['prob'][0] # the output probability vector for the first image in the batch
print 'predicted class is:', output_prob.argmax()
import numpy as np
import sys,os
caffe_root='/home/ls/caffe-master/' #根目录
sys.path.insert(0, caffe_root + 'python')
import caffe
os.chdir(caffe_root)
caffe.set_device(0)
caffe.set_mode_gpu()
root='/home/ls/caffe-master/'
deploy= root+'myself/deploy.prototxt' #deploy文件
caffe_model=root+'myself/caffenet_train_iter_15000.caffemodel' #训练好的 caffemodel
mean_file=root+'myself/imagenet_mean.npy'
img_txt=root+'myself/test/test.txt' #随机找的一张待测图片
#labels_filename =root+'synset_words.txt' #类别名称文件,将数字标签转换回类别名称
caffe.set_device(0)
caffe.set_mode_gpu()
net = caffe.Net(deploy,caffe_model,caffe.TEST) #加载model和network
#图片预处理设置
transformer = caffe.io.Transformer({'data': net.blobs['data'].data.shape}) #设定图片的shape格式(1,3,28,28)
transformer.set_transpose('data', (2,0,1)) #改变维度的顺序,由原始图片(28,28,3)变为(3,28,28)
transformer.set_mean('data', np.load(mean_file).mean(1).mean(1)) #减去均值,前面训练模型时没有减均值,这儿就不用
transformer.set_raw_scale('data', 255) # 缩放到【0,255】之间
transformer.set_channel_swap('data', (2,1,0)) #交换通道,将图片由RGB变为BGR
transformer.set_image_dim=(160,160)
fp=open(img_txt,'a+')
lines=fp.readlines()
for line in lines:
im=caffe.io.load_image(line.strip('\n')) #加载图片
net.blobs['data'].data[...] = transformer.preprocess('data',im) #执行上面设置的图片预处理操作,并将图片载入到blob中
#执行测试
out = net.forward()
# labels = np.loadtxt(labels_filename, str, delimiter='\t') #读取类别名称文件
#prob= net.blobs['Softmax1'].data[0].flatten() #取出最后一层(Softmax)属于某个类别的概率值,并打印
#print prob
#order=prob.argsort()[0] #将概率值排序,取出最大值所在的序号
#print 'the class is:',labels[order] #将该序号转换成对应的类别名称,并打印
# top_k = net.blobs['prob'].data[0].flatten().argsort()[-1:-2:-1]
# for i in np.arange(top_k.size):
# print top_k[i], labels[top_k[i]]
# fp.write(line.strip('\n')+' '+labels[top_k[i]]+'\n')
output_prob = output['prob'][0] # the output probability vector for the first image in the batch
print 'predicted class is:', output_prob.argmax()