learnopengl:chap01入门


这是我学习 learnOpengl的笔记,争取简明扼要(非新手教程)。

相应的代码见GitHub:learnOpengl

Opengl

要理解OpenGL是一个巨大的状态机,OpenGL的状态通常被称为OpenGL context。

使用OpenGL的时候主要是两种函数状态设置函数状态使用函数

对象object

是一个抽象,object是一些选项的集合,代表了OpenGL的状态的子集。可以理解为一个c风格的struct

// OpenGL的状态
struct OpenGL_Context {
    ...
    object* object_Window_Target;
    ...     
};

下面的是要给上面的object_window_Target对象进行设置。

// 创建对象
unsigned int objectId = 0;
glGenObject(1, &objectId);
// 绑定对象至上下文
glBindObject(GL_WINDOW_TARGET, objectId);
// 设置当前绑定到 GL_WINDOW_TARGET 的对象的一些选项
glSetObjectOption(GL_WINDOW_TARGET, GL_OPTION_WINDOW_WIDTH, 800);
glSetObjectOption(GL_WINDOW_TARGET, GL_OPTION_WINDOW_HEIGHT, 600);
// 将上下文对象设回默认
glBindObject(GL_WINDOW_TARGET, 0);

OpenGL的常见的工作流,务必要理解。

创建窗口

GLFW创建窗口,GLAD查找可使用的函数地址

你好,窗口

你好,三角形

  • 顶点数组对象:Vertex Array Object,VAO
  • 顶点缓冲对象:Vertex Buffer Object,VBO
  • 元素缓冲对象:Element Buffer Object,EBO 或 索引缓冲对象 Index Buffer Object,IBO

图形渲染管线工作:

  1. 3d坐标转换为2d
  2. 2d坐标转换成有颜色的像素值
    在这里插入图片描述

上图的蓝色部分是可以自定义的部分

顶点输入

经过顶点着色器后就变成了NDC(标准化设备坐标)

float vertices[] = {
    -0.5f, -0.5f, 0.0f,
     0.5f, -0.5f, 0.0f,
     0.0f,  0.5f, 0.0f
};

在这里插入图片描述

链接顶点的属性

在这里插入图片描述

glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 3 * sizeof(float), (void*)0);
glEnableVertexAttribArray(0);

glVertexAttribPointer:参数分别是

  • 顶点着色器中的layout(location = 0)location
  • 顶点属性的大小
  • 数据的类型
  • 数据是否要被标准化,0-1之间,signed是-1-1。这里设置是GL-FALSE
  • 步长
  • 起始位置的偏移量offset,需要是void*。所以进行了类型转换

顶点数组对象VAO

在这里插入图片描述

元素缓存对象

float vertices[] = {
    // 第一个三角形
    0.5f, 0.5f, 0.0f,   // 右上角
    0.5f, -0.5f, 0.0f,  // 右下角
    -0.5f, 0.5f, 0.0f,  // 左上角
    // 第二个三角形
    0.5f, -0.5f, 0.0f,  // 右下角
    -0.5f, -0.5f, 0.0f, // 左下角
    -0.5f, 0.5f, 0.0f   // 左上角
};

优化成:

float vertices[] = {
    0.5f, 0.5f, 0.0f,   // 右上角
    0.5f, -0.5f, 0.0f,  // 右下角
    -0.5f, -0.5f, 0.0f, // 左下角
    -0.5f, 0.5f, 0.0f   // 左上角
};

unsigned int indices[] = {
    // 注意索引从0开始! 
    // 此例的索引(0,1,2,3)就是顶点数组vertices的下标,
    // 这样可以由下标代表顶点组合成矩形

    0, 1, 3, // 第一个三角形
    1, 2, 3  // 第二个三角形
};

在这里插入图片描述

着色器

GLSL

#version version_number
in type in_variable_name;
in type in_variable_name;

out type out_variable_name;

uniform type uniform_name;

int main()
{
  // 处理输入并进行一些图形操作
  ...
  // 输出处理过的结果到输出变量
  out_variable_name = weird_stuff_we_processed;
}

数据类型

数据类型有一般c语言的类型,还有两种容器类型:vector&matrix

vector可以使用重组

vec2 someVec;
vec4 differentVec = someVec.xyxx;
vec3 anotherVec = differentVec.zyw;
vec4 otherVec = someVec.xxxx + anotherVec.yxzy;

不同的构造方式

vec2 vect = vec2(0.5, 0.7);
vec4 result = vec4(vect, 0.0, 0.0);
vec4 otherResult = vec4(result.xyz, 1.0);

输入和输出

除了inout关键字以外,还有两个例外:顶点着色器的输入&片段着色器的输出

如何输入给顶点着色器?需要layout标识。

如果输出片段着色器?

uniform

是cpu给gpu传递数据的,是全局的。

如果你声明了一个uniform却在GLSL代码中没用过,编译器会静默移除这个变量,导致最后编译出的版本中并不会包含它,这可能导致几个非常麻烦的错误,记住这点!

*自己的着色器类

编写,编译,管理着色器很麻烦,写个类让生活轻松一些(注意所有的都放在.h文件里)。
Shader.h

#ifndef SHADER_H
#define SHADER_H

#include <glad/glad.h>

#include <string>
#include <fstream>
#include <sstream>
#include <iostream>

class Shader
{
public:
    unsigned int ID;
    // constructor generates the shader on the fly
    // ------------------------------------------------------------------------
    Shader(const char* vertexPath, const char* fragmentPath)
    {
        // 1. retrieve the vertex/fragment source code from filePath
        std::string vertexCode;
        std::string fragmentCode;
        std::ifstream vShaderFile;
        std::ifstream fShaderFile;
        // ensure ifstream objects can throw exceptions:
        vShaderFile.exceptions (std::ifstream::failbit | std::ifstream::badbit);
        fShaderFile.exceptions (std::ifstream::failbit | std::ifstream::badbit);
        try 
        {
            // open files
            vShaderFile.open(vertexPath);
            fShaderFile.open(fragmentPath);
            std::stringstream vShaderStream, fShaderStream;
            // read file's buffer contents into streams
            vShaderStream << vShaderFile.rdbuf();
            fShaderStream << fShaderFile.rdbuf();
            // close file handlers
            vShaderFile.close();
            fShaderFile.close();
            // convert stream into string
            vertexCode   = vShaderStream.str();
            fragmentCode = fShaderStream.str();
        }
        catch (std::ifstream::failure& e)
        {
            std::cout << "ERROR::SHADER::FILE_NOT_SUCCESSFULLY_READ: " << e.what() << std::endl;
        }
        const char* vShaderCode = vertexCode.c_str();
        const char * fShaderCode = fragmentCode.c_str();
        // 2. compile shaders
        unsigned int vertex, fragment;
        // vertex shader
        vertex = glCreateShader(GL_VERTEX_SHADER);   //创建引用ID
        glShaderSource(vertex, 1, &vShaderCode, NULL); //绑定着色器代码
        glCompileShader(vertex);   //编译
        checkCompileErrors(vertex, "VERTEX");  //下面定义的private函数
        // fragment Shader
        fragment = glCreateShader(GL_FRAGMENT_SHADER);
        glShaderSource(fragment, 1, &fShaderCode, NULL);
        glCompileShader(fragment);
        checkCompileErrors(fragment, "FRAGMENT");
        // shader Program       //把着色器链接到着色器程序中
        ID = glCreateProgram();
        glAttachShader(ID, vertex);
        glAttachShader(ID, fragment);
        glLinkProgram(ID);
        checkCompileErrors(ID, "PROGRAM");
        // delete the shaders as they're linked into our program now and no longer necessary
        //链接完成后就可以删除了
        glDeleteShader(vertex);
        glDeleteShader(fragment);
    }
    // activate the shader
    // ------------------------------------------------------------------------
    void use() 
    { 
        glUseProgram(ID);  //激活程序对象
    }
    // utility uniform functions  设置uniform变量
    // ------------------------------------------------------------------------
    void setBool(const std::string &name, bool value) const
    {         
        glUniform1i(glGetUniformLocation(ID, name.c_str()), (int)value); 
    }
    // ------------------------------------------------------------------------
    void setInt(const std::string &name, int value) const
    { 
        glUniform1i(glGetUniformLocation(ID, name.c_str()), value); 
    }
    // ------------------------------------------------------------------------
    void setFloat(const std::string &name, float value) const
    { 
        glUniform1f(glGetUniformLocation(ID, name.c_str()), value); 
    }

private:
    // utility function for checking shader compilation/linking errors.
    // ------------------------------------------------------------------------
    void checkCompileErrors(unsigned int shader, std::string type)
    {
        int success;
        char infoLog[1024];
        if (type != "PROGRAM")
        {
            glGetShaderiv(shader, GL_COMPILE_STATUS, &success);
            if (!success)
            {
                glGetShaderInfoLog(shader, 1024, NULL, infoLog);
                std::cout << "ERROR::SHADER_COMPILATION_ERROR of type: " << type << "\n" << infoLog << "\n -- --------------------------------------------------- -- " << std::endl;
            }
        }
        else
        {
            glGetProgramiv(shader, GL_LINK_STATUS, &success);
            if (!success)
            {
                glGetProgramInfoLog(shader, 1024, NULL, infoLog);
                std::cout << "ERROR::PROGRAM_LINKING_ERROR of type: " << type << "\n" << infoLog << "\n -- --------------------------------------------------- -- " << std::endl;
            }
        }
    }
};
#endif

纹理

纹理的坐标

在这里插入图片描述

纹理环绕,过滤,多级渐远纹理

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);

一个常见的错误是,将放大过滤的选项设置为多级渐远纹理过滤选项之一。这样没有任何效果,因为多级渐远纹理主要是使用在纹理被缩小的情况下的:纹理放大不会使用多级渐远纹理,为放大过滤设置多级渐远纹理的选项会产生一个GL_INVALID_ENUM错误代码。

我还是有点看不懂这个多级渐远纹理的意思。

加载和创建纹理

glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, width, height, 0, GL_RGB, GL_UNSIGNED_BYTE, data);
glGenerateMipmap(GL_TEXTURE_2D);  //自动生成多级渐变纹理

参数:

  • 纹理目标
  • 纹理级别
  • 存储为何种格式
  • 最终纹理的高度和宽度。
  • 不用管,设为0
  • 源图的格式
  • 源图的数据类型
  • 数据

应用纹理

如何让片段着色器能够访问到纹理对象呢,需要一个uniform的采样器数据类型。如下

片段着色器:

#version 330 core
out vec4 FragColor;

in vec3 ourColor;
in vec2 TexCoord;  //顶点的颜色,这里有纹理了,下面就不对这个输入进行处理了

uniform sampler2D ourTexture;//采样器数据类型

void main()
{
    FragColor = texture(ourTexture, TexCoord);//内建的texture函数
}

纹理单元(多个纹理)

一个片段着色器可以有多个纹理采样器,我们要在opengl里面建立多个纹理(纹理单元),然后传递给采样器。

*代码解读

下面的代码是程序的大概的框架,理解了下面的代码就不用硬看上面的概念:

顶点着色器

#version 330 core  //核心模式,gl3.3
layout (location = 0) in vec3 aPos;  //输入属性
layout (location = 1) in vec3 aColor;
layout (location = 2) in vec2 aTexCoord;

out vec3 ourColor;
out vec2 TexCoord;

void main()
{
    gl_Position = vec4(aPos, 1.0); //内置的输出变量
    ourColor = aColor;
    TexCoord = aTexCoord;
}

片段着色器:

#version 330 core
out vec4 FragColor;  //输出,只需要输出颜色就行了

in vec3 ourColor;
in vec2 TexCoord;

uniform sampler2D texture1; //纹理采样器
uniform sampler2D texture2; //纹理采样器

void main()
{
    FragColor = mix(texture(texture1, TexCoord), texture(texture2, TexCoord), 0.2);
}

主体代码

#include <glad/glad.h>
#include <GLFW/glfw3.h>
#include <stb_image.h>   

#include <learnopengl/shader_s.h>

#include <iostream>

void framebuffer_size_callback(GLFWwindow* window, int width, int height);  //回调函数:随着窗口改变的视口(viewport)
																			//在下面注册。
void processInput(GLFWwindow *window); //GLFW的输入控制,对一些事件进行响应,比如按下ESC后设置widnowshouldclose为true

// settings
const unsigned int SCR_WIDTH = 800;
const unsigned int SCR_HEIGHT = 600;

int main()
{
    // glfw: initialize and configure
    // ------------------------------
    glfwInit();
    glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
    glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
    glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);  //core_profile使用核心模式

#ifdef __APPLE__  //针对苹果设备
    glfwWindowHint(GLFW_OPENGL_FORWARD_COMPAT, GL_TRUE);
#endif

    // glfw window creation
    // --------------------
    GLFWwindow* window = glfwCreateWindow(SCR_WIDTH, SCR_HEIGHT, "LearnOpenGL", NULL, NULL);
    if (window == NULL)  //检测
    {
        std::cout << "Failed to create GLFW window" << std::endl;
        glfwTerminate();
        return -1;
    }
    glfwMakeContextCurrent(window);
    glfwSetFramebufferSizeCallback(window, framebuffer_size_callback);  //注册回调函数

    // glad: load all OpenGL function pointers
    // ---------------------------------------
    //初始化GLAD处理OpenGL的函数指针
    if (!gladLoadGLLoader((GLADloadproc)glfwGetProcAddress))
    {
        std::cout << "Failed to initialize GLAD" << std::endl;
        return -1;
    }

    // build and compile our shader zprogram
    // ------------------------------------
    Shader ourShader("4.2.texture.vs", "4.2.texture.fs");  //详见前面的对应的代码

    // set up vertex data (and buffer(s)) and configure vertex attributes
    // ------------------------------------------------------------------
    //顶点输入,OpenGL只会处理范围为-1~1
    float vertices[] = {
        // positions          // colors           // texture coords
         0.5f,  0.5f, 0.0f,   1.0f, 0.0f, 0.0f,   1.0f, 1.0f, // top right
         0.5f, -0.5f, 0.0f,   0.0f, 1.0f, 0.0f,   1.0f, 0.0f, // bottom right
        -0.5f, -0.5f, 0.0f,   0.0f, 0.0f, 1.0f,   0.0f, 0.0f, // bottom left
        -0.5f,  0.5f, 0.0f,   1.0f, 1.0f, 0.0f,   0.0f, 1.0f  // top left 
    };
    unsigned int indices[] = {
        0, 1, 3, // first triangle
        1, 2, 3  // second triangle
    };
    unsigned int VBO, VAO, EBO;
    glGenVertexArrays(1, &VAO);  
    glGenBuffers(1, &VBO);  //顶点缓存对象
    glGenBuffers(1, &EBO);   //元素缓存对象,解决重复使用顶点的问题
	
    glBindVertexArray(VAO);  //这个的目的是什么?见着色器->顶点数组对象VAO
    
	//可以绑定多个缓存,只要类型不同就行,有的是GL_ARRAY_BUFFER,GL_ELEMENT_ARRAY_BUFFER
    glBindBuffer(GL_ARRAY_BUFFER, VBO);  
    glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW);//GL_STATIC_DRAW,数据改变不大,优化用

    glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, EBO);
    glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(indices), indices, GL_STATIC_DRAW);

	//下面的程序说明了如何让OpenGL解释顶点的数据,见上面着色器->链接顶点属性
    // position attribute
    glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 8 * sizeof(float), (void*)0);
    glEnableVertexAttribArray(0);  //启用着色器location为0的属性
    // color attribute
    glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 8 * sizeof(float), (void*)(3 * sizeof(float)));
    glEnableVertexAttribArray(1);
    // texture coord attribute
    glVertexAttribPointer(2, 2, GL_FLOAT, GL_FALSE, 8 * sizeof(float), (void*)(6 * sizeof(float)));
    glEnableVertexAttribArray(2);


    // load and create a texture 
    // -------------------------
    unsigned int texture1, texture2;
    // texture 1
    // ---------
    glGenTextures(1, &texture1);
    glBindTexture(GL_TEXTURE_2D, texture1);   
     // set the texture wrapping parameters 环绕参数,纹理坐标超出范围的处理方式
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);	// set texture wrapping to GL_REPEAT (default wrapping method) s轴
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT); //t轴 
    // set texture filtering parameters 如何把坐标值映射到像素值
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); //纹理缩小时候的使用GL_LINEAR,可选GL_NEAREST
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
    // load image, create texture and generate mipmaps
    int width, height, nrChannels;
    stbi_set_flip_vertically_on_load(true); // tell stb_image.h to flip loaded texture's on the y-axis.注意opengl和stbi的y轴方向区别
    // The FileSystem::getPath(...) is part of the GitHub repository so we can find files on any IDE/platform; replace it with your own image path.
    unsigned char *data = stbi_load(FileSystem::getPath("resources/textures/container.jpg").c_str(), &width, &height, &nrChannels, 0);
    if (data)
    {
        glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, width, height, 0, GL_RGB, GL_UNSIGNED_BYTE, data);//见纹理->加载和创建纹理
        glGenerateMipmap(GL_TEXTURE_2D); //生成渐远纹理
    }
    else
    {
        std::cout << "Failed to load texture" << std::endl;
    }
    stbi_image_free(data);
    // texture 2
    // ---------
    glGenTextures(1, &texture2);
    glBindTexture(GL_TEXTURE_2D, texture2);  
    // set the texture wrapping parameters
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);	// set texture wrapping to GL_REPEAT (default wrapping method)
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
    // set texture filtering parameters
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
    // load image, create texture and generate mipmaps
    data = stbi_load(FileSystem::getPath("resources/textures/awesomeface.png").c_str(), &width, &height, &nrChannels, 0);
    if (data)
    {
        // note that the awesomeface.png has transparency and thus an alpha channel, so make sure to tell OpenGL the data type is of GL_RGBA
        glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, width, height, 0, GL_RGBA, GL_UNSIGNED_BYTE, data);
        glGenerateMipmap(GL_TEXTURE_2D);
    }
    else
    {
        std::cout << "Failed to load texture" << std::endl;
    }
    stbi_image_free(data);  //释放数据

    // tell opengl for each sampler to which texture unit it belongs to (only has to be done once)
    // -------------------------------------------------------------------------------------------
    ourShader.use(); // don't forget to activate/use the shader before setting uniforms!
    // either set it manually like so: 
    glUniform1i(glGetUniformLocation(ourShader.ID, "texture1"), 0);  //从纹理单元传递给纹理采样器
    // or set it via the texture class
    ourShader.setInt("texture2", 1);



    // render loop 渲染循环
    // -----------
    while (!glfwWindowShouldClose(window)) //是否退出窗口
    {
        // input
        // -----
        processInput(window);   //GLFW的事件响应,每循环执行

        // render
        // ------
        glClearColor(0.2f, 0.3f, 0.3f, 1.0f); //清空所用的颜色
        glClear(GL_COLOR_BUFFER_BIT); //用glCleatColor清空颜色缓存(为了不看到上一帧的颜色),还可以清理深度缓存等

        // bind textures on corresponding texture units
        glActiveTexture(GL_TEXTURE0);  //激活纹理单元0
        glBindTexture(GL_TEXTURE_2D, texture1);  //绑定纹理单元
        glActiveTexture(GL_TEXTURE1);
        glBindTexture(GL_TEXTURE_2D, texture2);

        // render container
        ourShader.use();
        glBindVertexArray(VAO);
        glDrawElements(GL_TRIANGLES, 6, GL_UNSIGNED_INT, 0);//绘制EBO数据,要绘制VBO需要使用glDrawArrays

        // glfw: swap buffers and poll IO events (keys pressed/released, mouse moved etc.)
        // -------------------------------------------------------------------------------
        glfwSwapBuffers(window);  //交换颜色缓冲,
        glfwPollEvents();  //检测是否触发事件并调用函数
    }

    // optional: de-allocate all resources once they've outlived their purpose:
    // ------------------------------------------------------------------------
    glDeleteVertexArrays(1, &VAO);
    glDeleteBuffers(1, &VBO);
    glDeleteBuffers(1, &EBO);

    // glfw: terminate, clearing all previously allocated GLFW resources.
    // ------------------------------------------------------------------
    glfwTerminate();   //释放资源
    return 0;
}

// process all input: query GLFW whether relevant keys are pressed/released this frame and react accordingly
// ---------------------------------------------------------------------------------------------------------
void processInput(GLFWwindow *window)
{
    if (glfwGetKey(window, GLFW_KEY_ESCAPE) == GLFW_PRESS)
        glfwSetWindowShouldClose(window, true);
}

// glfw: whenever the window size changed (by OS or user resize) this callback function executes
// ---------------------------------------------------------------------------------------------
void framebuffer_size_callback(GLFWwindow* window, int width, int height)
{
    // make sure the viewport matches the new window dimensions; note that width and 
    // height will be significantly larger than specified on retina displays.
    glViewport(0, 0, width, height);
}

变换

基本变换

缩放
在这里插入图片描述

位移
在这里插入图片描述
旋转
在这里插入图片描述
在这里插入图片描述

上面的沿着任意旋转轴的公式并不能解决万向节死锁,应该使用四元数来实现。

矩阵组合

注意矩阵的组合是没有交换律的。

*公式推导

实践

位移

glm::vec4 vec(1.0f, 0.0f, 0.0f, 1.0f);
// 译注:下面就是矩阵初始化的一个例子,如果使用的是0.9.9及以上版本
// 下面这行代码就需要改为:
// glm::mat4 trans = glm::mat4(1.0f)
// 之后将不再进行提示
glm::mat4 trans;
trans = glm::translate(trans, glm::vec3(1.0f, 1.0f, 0.0f));  //生成了平移矩阵
vec = trans * vec;

旋转和缩放

glm::mat4 trans;
trans = glm::rotate(trans, glm::radians(90.0f), glm::vec3(0.0, 0.0, 1.0));
trans = glm::scale(trans, glm::vec3(0.5, 0.5, 0.5));

注意上面是先缩放再旋转

把矩阵传递给着色器
在着色器中加入uniform mat4变量transform;然后如下传递变换矩阵:

unsigned int transformLoc = glGetUniformLocation(ourShader.ID, "transform");
glUniformMatrix4fv(transformLoc, 1, GL_FALSE, glm::value_ptr(trans));//location,矩阵数,是否转置,真正数据

注意GLM和OpenGL的矩阵布局都是列主序的

作业

作业二:缩放应用负值会导致物体被翻转?为什么?

坐标系统

在这里插入图片描述

裁剪空间

在经过投影矩阵之后才转化为标准化的坐标设备(-1.0,1.0)。顶点变换到裁剪空间之后就会进行透视除法

正射投影
在这里插入图片描述
使用内置的函数创建正射投影矩阵:

glm::ortho(0.0f, 800.0f, 0.0f, 600.0f, 0.1f, 100.0f); //会将这些内部的坐标转化为标准坐标

透视投影

在这里插入图片描述

glm::mat4 proj = glm::perspective(glm::radians(45.0f), (float)width/(float)height, 0.1f, 100.0f); //fov值,宽高比,近距离,远距离

组合在一起

在这里插入图片描述
最后的顶点应该被赋值到顶点着色器中的gl_Position,OpenGL将会自动进行透视除法和裁剪。

3D

opengl是右手系

glm::mat4 model; //经过这个矩阵就变换到了世界空间了
model = glm::rotate(model, glm::radians(-55.0f), glm::vec3(1.0f, 0.0f, 0.0f));


glm::mat4 view;  //相机观察,相机是从哪个方向看的呢?
// 注意,我们将矩阵向我们要进行移动场景的反方向移动。
view = glm::translate(view, glm::vec3(0.0f, 0.0f, -3.0f));


glm::mat4 projection;
projection = glm::perspective(glm::radians(45.0f), screenWidth / screenHeight, 0.1f, 100.0f);

下一步是要把这些矩阵传递给着色器:
着色器

#version 330 core
layout (location = 0) in vec3 aPos;
...
uniform mat4 model;
uniform mat4 view;
uniform mat4 projection;

void main()
{
    // 注意乘法要从右向左读
    gl_Position = projection * view * model * vec4(aPos, 1.0);
    ...
}

传递

int modelLoc = glGetUniformLocation(ourShader.ID, "model"));
glUniformMatrix4fv(modelLoc, 1, GL_FALSE, glm::value_ptr(model));
... // 观察矩阵和投影矩阵与之类似

z缓冲

glEnable(GL_DEPTH_TEST);
//在每次渲染迭代的时候清除深度缓存
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

作业

摄像机

OpenGL本身是没有摄像机的概念。

  1. 摄像机的位置:世界空间指向的摄像机位置的向量
  2. 摄像机的方向
  3. 右轴
  4. 上轴
glm::vec3 cameraPos = glm::vec3(0.0f, 0.0f, 3.0f); //摄像机的位置

glm::vec3 cameraTarget = glm::vec3(0.0f, 0.0f, 0.0f);//目标点
glm::vec3 cameraDirection = glm::normalize(cameraPos - cameraTarget);  //得到摄像机的z轴的方向,与相机指向的方向相反

glm::vec3 up = glm::vec3(0.0f, 1.0f, 0.0f);   //上向量
glm::vec3 cameraRight = glm::normalize(glm::cross(up, cameraDirection));  //叉乘得到右轴

glm::vec3 cameraUp = glm::cross(cameraDirection, cameraRight);  //得到上轴

在这里插入图片描述

Look At

变换坐标空间,由世界空间的坐标轴变换到观察空间的坐标轴
在这里插入图片描述
幸运的是GLM提供了这些支持,可以自动的计算

glm::mat4 view;
view = glm::lookAt(glm::vec3(0.0f, 0.0f, 3.0f),  //位置
           glm::vec3(0.0f, 0.0f, 0.0f),     //目标
           glm::vec3(0.0f, 1.0f, 0.0f));    //上向量

自由移动,移动速度,视角移动,缩放

下面的lookAt矩阵就是始终朝着一个方向,可以通过按键wasd改变cameraPos来实现自由移动

view = glm::lookAt(cameraPos, cameraPos + cameraFront, cameraUp);

前面的移动速度是常量,随着不同机器的帧数变换移动的速度会有变化!需要解决跨硬件的兼容。

float deltaTime = 0.0f; // 当前帧与上一帧的时间差
float lastFrame = 0.0f; // 上一帧的时间

float currentFrame = glfwGetTime();
deltaTime = currentFrame - lastFrame;
lastFrame = currentFrame;

void processInput(GLFWwindow *window)
{
  float cameraSpeed = 2.5f * deltaTime;//所有的机器都会有同样的累计位移
  ...
}

为了视角移动,需要能够改变cameraFront向量。
在这里插入图片描述
3种欧拉角:俯仰角(Pitch)、偏航角(Yaw)和滚转角(Roll),我们不关心roll

欧拉角会出现万向节死锁。

由pitch和yaw得到cameraFront见推导。

由鼠标输入获得pitch和yaw见下面的总的代码,要记得

glfwSetInputMode(window, GLFW_CURSOR, GLFW_CURSOR_DISABLED);  //捕捉鼠标
void mouse_callback(GLFWwindow* window, double xpos, double ypos); //回调函数
glfwSetCursorPosCallback(window, mouse_callback);  //注册鼠标回调函数后启用鼠标监控

缩放是通过fov((Field of View)来决定,具体见代码。

推导

  1. lookAt矩阵
  2. 由pitch和yaw得到cameraFront

*摄像机类(代码)

#ifndef CAMERA_H
#define CAMERA_H

#include <glad/glad.h>
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>

#include <vector>

// Defines several possible options for camera movement. Used as abstraction to stay away from window-system specific input methods
enum Camera_Movement {
    FORWARD,
    BACKWARD,
    LEFT,
    RIGHT
};

// Default camera values
const float YAW         = -90.0f;
const float PITCH       =  0.0f;
const float SPEED       =  2.5f;
const float SENSITIVITY =  0.1f;
const float ZOOM        =  45.0f;  //缩放


// An abstract camera class that processes input and calculates the corresponding Euler Angles, Vectors and Matrices for use in OpenGL
class Camera
{
public:
    // camera Attributes
    glm::vec3 Position;
    glm::vec3 Front;
    glm::vec3 Up;
    glm::vec3 Right;
    glm::vec3 WorldUp;
    // euler Angles
    float Yaw;
    float Pitch;
    // camera options
    float MovementSpeed;
    float MouseSensitivity;
    float Zoom;

    // constructor with vectors
    Camera(glm::vec3 position = glm::vec3(0.0f, 0.0f, 0.0f), glm::vec3 up = glm::vec3(0.0f, 1.0f, 0.0f), float yaw = YAW, float pitch = PITCH) : Front(glm::vec3(0.0f, 0.0f, -1.0f)), MovementSpeed(SPEED), MouseSensitivity(SENSITIVITY), Zoom(ZOOM)
    {
        Position = position;
        WorldUp = up;
        Yaw = yaw;
        Pitch = pitch;
        updateCameraVectors();
    }
    // constructor with scalar values
    Camera(float posX, float posY, float posZ, float upX, float upY, float upZ, float yaw, float pitch) : Front(glm::vec3(0.0f, 0.0f, -1.0f)), MovementSpeed(SPEED), MouseSensitivity(SENSITIVITY), Zoom(ZOOM)
    {
        Position = glm::vec3(posX, posY, posZ);
        WorldUp = glm::vec3(upX, upY, upZ);
        Yaw = yaw;
        Pitch = pitch;
        updateCameraVectors();
    }

    // returns the view matrix calculated using Euler Angles and the LookAt Matrix
    glm::mat4 GetViewMatrix()
    {
        return glm::lookAt(Position, Position + Front, Up);
    }

    // processes input received from any keyboard-like input system. Accepts input parameter in the form of camera defined ENUM (to abstract it from windowing systems)
    void ProcessKeyboard(Camera_Movement direction, float deltaTime)  //处理移动
    {
        float velocity = MovementSpeed * deltaTime;
        if (direction == FORWARD)
            Position += Front * velocity;
        if (direction == BACKWARD)
            Position -= Front * velocity;
        if (direction == LEFT)
            Position -= Right * velocity;
        if (direction == RIGHT)
            Position += Right * velocity;
    }

    // processes input received from a mouse input system. Expects the offset value in both the x and y direction.
    void ProcessMouseMovement(float xoffset, float yoffset, GLboolean constrainPitch = true)  //处理旋转,由鼠标位移计算Pitch和Yaw
    {
        xoffset *= MouseSensitivity;
        yoffset *= MouseSensitivity;

        Yaw   += xoffset;
        Pitch += yoffset;

        // make sure that when pitch is out of bounds, screen doesn't get flipped
        if (constrainPitch)
        {
            if (Pitch > 89.0f)
                Pitch = 89.0f;
            if (Pitch < -89.0f)
                Pitch = -89.0f;
        }

        // update Front, Right and Up Vectors using the updated Euler angles
        updateCameraVectors();
    }

    // processes input received from a mouse scroll-wheel event. Only requires input on the vertical wheel-axis
    void ProcessMouseScroll(float yoffset)
    {
        Zoom -= (float)yoffset;
        if (Zoom < 1.0f)
            Zoom = 1.0f;
        if (Zoom > 45.0f)
            Zoom = 45.0f;
    }

private:
    // calculates the front vector from the Camera's (updated) Euler Angles
    void updateCameraVectors()
    {
        // calculate the new Front vector
        glm::vec3 front;
        front.x = cos(glm::radians(Yaw)) * cos(glm::radians(Pitch));
        front.y = sin(glm::radians(Pitch));
        front.z = sin(glm::radians(Yaw)) * cos(glm::radians(Pitch));
        Front = glm::normalize(front);
        // also re-calculate the Right and Up vector
        Right = glm::normalize(glm::cross(Front, WorldUp));  // normalize the vectors, because their length gets closer to 0 the more you look up or down which results in slower movement.
        Up    = glm::normalize(glm::cross(Right, Front));
    }
};
#endif

*本章节代码

#include <glad/glad.h>
#include <GLFW/glfw3.h>
#include <stb_image.h>

#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <glm/gtc/type_ptr.hpp>

#include <learnopengl/shader_m.h>
#include <learnopengl/camera.h>

#include <iostream>

void framebuffer_size_callback(GLFWwindow* window, int width, int height);
void mouse_callback(GLFWwindow* window, double xpos, double ypos);
void scroll_callback(GLFWwindow* window, double xoffset, double yoffset);
void processInput(GLFWwindow *window);

// settings
const unsigned int SCR_WIDTH = 800;
const unsigned int SCR_HEIGHT = 600;

// camera
Camera camera(glm::vec3(0.0f, 0.0f, 3.0f));
float lastX = SCR_WIDTH / 2.0f;
float lastY = SCR_HEIGHT / 2.0f;
bool firstMouse = true;

// timing 为了保证不同硬件不同帧率下移动速度的兼容。
float deltaTime = 0.0f;	// time between current frame and last frame
float lastFrame = 0.0f;

int main()
{
    // glfw: initialize and configure
    // ------------------------------
    glfwInit();
    glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
    glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
    glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);

#ifdef __APPLE__
    glfwWindowHint(GLFW_OPENGL_FORWARD_COMPAT, GL_TRUE);
#endif

    // glfw window creation
    // --------------------
    GLFWwindow* window = glfwCreateWindow(SCR_WIDTH, SCR_HEIGHT, "LearnOpenGL", NULL, NULL);
    if (window == NULL)
    {
        std::cout << "Failed to create GLFW window" << std::endl;
        glfwTerminate();
        return -1;
    }
    glfwMakeContextCurrent(window);
    //设置一些回调函数
    glfwSetFramebufferSizeCallback(window, framebuffer_size_callback);
    glfwSetCursorPosCallback(window, mouse_callback);
    glfwSetScrollCallback(window, scroll_callback);

    // tell GLFW to capture our mouse
    glfwSetInputMode(window, GLFW_CURSOR, GLFW_CURSOR_DISABLED);

    // glad: load all OpenGL function pointers
    // ---------------------------------------
    if (!gladLoadGLLoader((GLADloadproc)glfwGetProcAddress))
    {
        std::cout << "Failed to initialize GLAD" << std::endl;
        return -1;
    }

    // configure global opengl state
    // -----------------------------
    glEnable(GL_DEPTH_TEST);  //z缓冲

    // build and compile our shader zprogram
    // ------------------------------------
    Shader ourShader("7.4.camera.vs", "7.4.camera.fs");

    // set up vertex data (and buffer(s)) and configure vertex attributes
    // ------------------------------------------------------------------
    float vertices[] = {
        -0.5f, -0.5f, -0.5f,  0.0f, 0.0f,
         0.5f, -0.5f, -0.5f,  1.0f, 0.0f,
         0.5f,  0.5f, -0.5f,  1.0f, 1.0f,
         0.5f,  0.5f, -0.5f,  1.0f, 1.0f,
        -0.5f,  0.5f, -0.5f,  0.0f, 1.0f,
        -0.5f, -0.5f, -0.5f,  0.0f, 0.0f,

        -0.5f, -0.5f,  0.5f,  0.0f, 0.0f,
         0.5f, -0.5f,  0.5f,  1.0f, 0.0f,
         0.5f,  0.5f,  0.5f,  1.0f, 1.0f,
         0.5f,  0.5f,  0.5f,  1.0f, 1.0f,
        -0.5f,  0.5f,  0.5f,  0.0f, 1.0f,
        -0.5f, -0.5f,  0.5f,  0.0f, 0.0f,

        -0.5f,  0.5f,  0.5f,  1.0f, 0.0f,
        -0.5f,  0.5f, -0.5f,  1.0f, 1.0f,
        -0.5f, -0.5f, -0.5f,  0.0f, 1.0f,
        -0.5f, -0.5f, -0.5f,  0.0f, 1.0f,
        -0.5f, -0.5f,  0.5f,  0.0f, 0.0f,
        -0.5f,  0.5f,  0.5f,  1.0f, 0.0f,

         0.5f,  0.5f,  0.5f,  1.0f, 0.0f,
         0.5f,  0.5f, -0.5f,  1.0f, 1.0f,
         0.5f, -0.5f, -0.5f,  0.0f, 1.0f,
         0.5f, -0.5f, -0.5f,  0.0f, 1.0f,
         0.5f, -0.5f,  0.5f,  0.0f, 0.0f,
         0.5f,  0.5f,  0.5f,  1.0f, 0.0f,

        -0.5f, -0.5f, -0.5f,  0.0f, 1.0f,
         0.5f, -0.5f, -0.5f,  1.0f, 1.0f,
         0.5f, -0.5f,  0.5f,  1.0f, 0.0f,
         0.5f, -0.5f,  0.5f,  1.0f, 0.0f,
        -0.5f, -0.5f,  0.5f,  0.0f, 0.0f,
        -0.5f, -0.5f, -0.5f,  0.0f, 1.0f,

        -0.5f,  0.5f, -0.5f,  0.0f, 1.0f,
         0.5f,  0.5f, -0.5f,  1.0f, 1.0f,
         0.5f,  0.5f,  0.5f,  1.0f, 0.0f,
         0.5f,  0.5f,  0.5f,  1.0f, 0.0f,
        -0.5f,  0.5f,  0.5f,  0.0f, 0.0f,
        -0.5f,  0.5f, -0.5f,  0.0f, 1.0f
    };
    // world space positions of our cubes
    glm::vec3 cubePositions[] = {
        glm::vec3( 0.0f,  0.0f,  0.0f),
        glm::vec3( 2.0f,  5.0f, -15.0f),
        glm::vec3(-1.5f, -2.2f, -2.5f),
        glm::vec3(-3.8f, -2.0f, -12.3f),
        glm::vec3( 2.4f, -0.4f, -3.5f),
        glm::vec3(-1.7f,  3.0f, -7.5f),
        glm::vec3( 1.3f, -2.0f, -2.5f),
        glm::vec3( 1.5f,  2.0f, -2.5f),
        glm::vec3( 1.5f,  0.2f, -1.5f),
        glm::vec3(-1.3f,  1.0f, -1.5f)
    };
    unsigned int VBO, VAO;
    glGenVertexArrays(1, &VAO);
    glGenBuffers(1, &VBO);

    glBindVertexArray(VAO);

    glBindBuffer(GL_ARRAY_BUFFER, VBO);
    glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW);

    // position attribute
    glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 5 * sizeof(float), (void*)0);
    glEnableVertexAttribArray(0);
    // texture coord attribute
    glVertexAttribPointer(1, 2, GL_FLOAT, GL_FALSE, 5 * sizeof(float), (void*)(3 * sizeof(float)));
    glEnableVertexAttribArray(1);


    // load and create a texture 
    // -------------------------
    unsigned int texture1, texture2;
    // texture 1
    // ---------
    glGenTextures(1, &texture1);
    glBindTexture(GL_TEXTURE_2D, texture1);
    // set the texture wrapping parameters
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
    // set texture filtering parameters
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
    // load image, create texture and generate mipmaps
    int width, height, nrChannels;
    stbi_set_flip_vertically_on_load(true); // tell stb_image.h to flip loaded texture's on the y-axis.
    unsigned char *data = stbi_load(FileSystem::getPath("resources/textures/container.jpg").c_str(), &width, &height, &nrChannels, 0);
    if (data)
    {
        glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, width, height, 0, GL_RGB, GL_UNSIGNED_BYTE, data);
        glGenerateMipmap(GL_TEXTURE_2D);
    }
    else
    {
        std::cout << "Failed to load texture" << std::endl;
    }
    stbi_image_free(data);
    // texture 2
    // ---------
    glGenTextures(1, &texture2);
    glBindTexture(GL_TEXTURE_2D, texture2);
    // set the texture wrapping parameters
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
    // set texture filtering parameters
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
    // load image, create texture and generate mipmaps
    data = stbi_load(FileSystem::getPath("resources/textures/awesomeface.png").c_str(), &width, &height, &nrChannels, 0);
    if (data)
    {
        // note that the awesomeface.png has transparency and thus an alpha channel, so make sure to tell OpenGL the data type is of GL_RGBA
        glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, width, height, 0, GL_RGBA, GL_UNSIGNED_BYTE, data);
        glGenerateMipmap(GL_TEXTURE_2D);
    }
    else
    {
        std::cout << "Failed to load texture" << std::endl;
    }
    stbi_image_free(data);

    // tell opengl for each sampler to which texture unit it belongs to (only has to be done once)
    // -------------------------------------------------------------------------------------------
    ourShader.use();
    ourShader.setInt("texture1", 0);
    ourShader.setInt("texture2", 1);


    // render loop
    // -----------
    while (!glfwWindowShouldClose(window))
    {
        // per-frame time logic每一帧的时间逻辑
        // --------------------
        float currentFrame = static_cast<float>(glfwGetTime());
        deltaTime = currentFrame - lastFrame;
        lastFrame = currentFrame;

        // input
        // -----
        processInput(window);

        // render
        // ------
        glClearColor(0.2f, 0.3f, 0.3f, 1.0f);
        glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); 

        // bind textures on corresponding texture units
        glActiveTexture(GL_TEXTURE0);
        glBindTexture(GL_TEXTURE_2D, texture1);
        glActiveTexture(GL_TEXTURE1);
        glBindTexture(GL_TEXTURE_2D, texture2);

        // activate shader
        ourShader.use();

        // pass projection matrix to shader (note that in this case it could change every frame)
        glm::mat4 projection = glm::perspective(glm::radians(camera.Zoom), (float)SCR_WIDTH / (float)SCR_HEIGHT, 0.1f, 100.0f);
        ourShader.setMat4("projection", projection);

        // camera/view transformation
        glm::mat4 view = camera.GetViewMatrix();
        ourShader.setMat4("view", view);

        // render boxes
        glBindVertexArray(VAO);
        for (unsigned int i = 0; i < 10; i++)
        {
            // calculate the model matrix for each object and pass it to shader before drawing
            glm::mat4 model = glm::mat4(1.0f); // make sure to initialize matrix to identity matrix first
            model = glm::translate(model, cubePositions[i]);
            float angle = 20.0f * i;
            model = glm::rotate(model, glm::radians(angle), glm::vec3(1.0f, 0.3f, 0.5f));
            ourShader.setMat4("model", model);

            glDrawArrays(GL_TRIANGLES, 0, 36);
        }

        // glfw: swap buffers and poll IO events (keys pressed/released, mouse moved etc.)
        // -------------------------------------------------------------------------------
        glfwSwapBuffers(window);
        glfwPollEvents();
    }

    // optional: de-allocate all resources once they've outlived their purpose:
    // ------------------------------------------------------------------------
    glDeleteVertexArrays(1, &VAO);
    glDeleteBuffers(1, &VBO);

    // glfw: terminate, clearing all previously allocated GLFW resources.
    // ------------------------------------------------------------------
    glfwTerminate();
    return 0;
}

// process all input: query GLFW whether relevant keys are pressed/released this frame and react accordingly
// ---------------------------------------------------------------------------------------------------------
void processInput(GLFWwindow *window)
{
    if (glfwGetKey(window, GLFW_KEY_ESCAPE) == GLFW_PRESS)
        glfwSetWindowShouldClose(window, true);

    if (glfwGetKey(window, GLFW_KEY_W) == GLFW_PRESS)
        camera.ProcessKeyboard(FORWARD, deltaTime);
    if (glfwGetKey(window, GLFW_KEY_S) == GLFW_PRESS)
        camera.ProcessKeyboard(BACKWARD, deltaTime);
    if (glfwGetKey(window, GLFW_KEY_A) == GLFW_PRESS)
        camera.ProcessKeyboard(LEFT, deltaTime);
    if (glfwGetKey(window, GLFW_KEY_D) == GLFW_PRESS)
        camera.ProcessKeyboard(RIGHT, deltaTime);
}

// glfw: whenever the window size changed (by OS or user resize) this callback function executes
// ---------------------------------------------------------------------------------------------
void framebuffer_size_callback(GLFWwindow* window, int width, int height)
{
    // make sure the viewport matches the new window dimensions; note that width and 
    // height will be significantly larger than specified on retina displays.
    glViewport(0, 0, width, height);
}


// glfw: whenever the mouse moves, this callback is called
// -------------------------------------------------------
void mouse_callback(GLFWwindow* window, double xposIn, double yposIn)
{
    float xpos = static_cast<float>(xposIn);
    float ypos = static_cast<float>(yposIn);

    if (firstMouse)
    {
        lastX = xpos;
        lastY = ypos;
        firstMouse = false;
    }

    float xoffset = xpos - lastX;
    float yoffset = lastY - ypos; // reversed since y-coordinates go from bottom to top

    lastX = xpos;
    lastY = ypos;

    camera.ProcessMouseMovement(xoffset, yoffset);
}

// glfw: whenever the mouse scroll wheel scrolls, this callback is called
// ----------------------------------------------------------------------
void scroll_callback(GLFWwindow* window, double xoffset, double yoffset)
{
    camera.ProcessMouseScroll(static_cast<float>(yoffset));
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值