[转载]为什么要用补码

二. 原码, 反码, 补码的基础概念和计算方法.

在探求为何机器要使用补码之前, 让我们先了解原码, 反码和补码的概念.对于一个数, 计算机要使用一定的编码方式进行存储. 原码, 反码, 补码是机器存储一个具体数字的编码方式.

1. 原码

原码就是符号位加上真值的绝对值, 即用第一位表示符号, 其余位表示值. 比如如果是8位二进制:

[+1] = 0000 0001

[-1] = 1000 0001

第一位是符号位. 因为第一位是符号位, 所以8位二进制数的取值范围就是:

[1111 1111 , 0111 1111]

[-127 , 127]

原码是人脑最容易理解和计算的表示方式.

2. 反码

反码的表示方法是:

正数的反码是其本身

负数的反码是在其原码的基础上, 符号位不变,其余各个位取反.

[+1] = [00000001] = [00000001]

[-1] = [10000001] = [11111110]

可见如果一个反码表示的是负数, 人脑无法直观的看出来它的数值. 通常要将其转换成原码再计算.

3. 补码

补码的表示方法是:

正数的补码就是其本身

负数的补码是在其原码的基础上, 符号位不变, 其余各位取反, 最后+1. (即在反码的基础上+1)

[+1] = [00000001] = [00000001] = [00000001]

[-1] = [10000001] = [11111110] = [11111111]

对于负数, 补码表示方式也是人脑无法直观看出其数值的. 通常也需要转换成原码在计算其数值.

 

三. 为何要使用原码, 反码和补码

在开始深入学习前, 我的学习建议是先"死记硬背"上面的原码, 反码和补码的表示方式以及计算方法.

现在我们知道了计算机可以有三种编码方式表示一个数. 对于正数因为三种编码方式的结果都相同:

[+1] = [00000001] = [00000001] = [00000001]

所以不需要过多解释. 但是对于负数:

[-1] = [10000001] = [11111110] = [11111111]

可见原码, 反码和补码是完全不同的. 既然原码才是被人脑直接识别并用于计算表示方式, 为何还会有反码和补码呢?

首先, 因为人脑可以知道第一位是符号位, 在计算的时候我们会根据符号位, 选择对真值区域的加减. (真值的概念在本文最开头). 但是对于计算机, 加减乘数已经是最基础的运算, 要设计的尽量简单. 计算机辨别"符号位"显然会让计算机的基础电路设计变得十分复杂! 于是人们想出了将符号位也参与运算的方法. 我们知道, 根据运算法则减去一个正数等于加上一个负数, 即: 1-1 = 1 + (-1) = 0 , 所以机器可以只有加法而没有减法, 这样计算机运算的设计就更简单了.

于是人们开始探索 将符号位参与运算, 并且只保留加法的方法. 首先来看原码:

计算十进制的表达式: 1-1=0

1 - 1 = 1 + (-1) = [00000001] + [10000001] = [10000010] = -2

如果用原码表示, 让符号位也参与计算, 显然对于减法来说, 结果是不正确的.这也就是为何计算机内部不使用原码表示一个数.

为了解决原码做减法的问题, 出现了反码:

计算十进制的表达式: 1-1=0

1 - 1 = 1 + (-1) = [0000 0001] + [1000 0001]= [0000 0001] + [1111 1110] = [1111 1111] = [1000 0000] = -0

发现用反码计算减法, 结果的真值部分是正确的. 而唯一的问题其实就出现在"0"这个特殊的数值上. 虽然人们理解上+0和-0是一样的, 但是0带符号是没有任何意义的. 而且会有[0000 0000]和[1000 0000]两个编码表示0.

于是补码的出现, 解决了0的符号以及两个编码的问题:

1-1 = 1 + (-1) = [0000 0001] + [1000 0001] = [0000 0001] + [1111 1111] = [0000 0000]=[0000 0000]

这样0用[0000 0000]表示, 而以前出现问题的-0则不存在了.而且可以用[1000 0000]表示-128:

(-1) + (-127) = [1000 0001] + [1111 1111] = [1111 1111] + [1000 0001] = [1000 0000]

-1-127的结果应该是-128, 在用补码运算的结果中, [1000 0000] 就是-128. 但是注意因为实际上是使用以前的-0的补码来表示-128, 所以-128并没有原码和反码表示.(对-128的补码表示[1000 0000]补算出来的原码是[0000 0000], 这是不正确的)

使用补码, 不仅仅修复了0的符号以及存在两个编码的问题, 而且还能够多表示一个最低数. 这就是为什么8位二进制, 使用原码或反码表示的范围为[-127, +127], 而使用补码表示的范围为[-128, 127].

因为机器使用补码, 所以对于编程中常用到的32位int类型, 可以表示范围是: [-231, 231-1] 因为第一位表示的是符号位.而使用补码表示时又可以多保存一个最小值.

 

而且实际上并不是从10000001到11111111依次表示-1到-127,而是刚好相反的,从10000001到11111111依次表示-127到-1


用补码表示负数时:负数X用2^n - |X|来表示,其中n为机器的字长

当n=8时,[-1]补 = 2^8 - 1 = 11111111, [-127]补 = 2^8 - 127 = 100000001

[-0]补=2^8=00000000在补码表示法中只有一种表示,即00000000


如果要扩展的数是符号数,并且采用补码形式表示,进行符号扩展

求补                    求补

[X]补  -------->[-X]补 -------->[X]补 




内容概要:本文详细介绍了“秒杀商城”微服务架构的设计与实战全过程,涵盖系统从需求分析、服务拆分、技术选型到核心功能开发、分布式事务处理、容器化部署及监控链路追踪的完整流程。重点解决了高并发场景下的超卖问题,采用Redis预减库存、消息队列削峰、数据库乐观锁等手段保障数据一致性,并通过Nacos实现服务注册发现与配置管理,利用Seata处理跨服务分布式事务,结合RabbitMQ实现异步下单,提升系统吞吐能力。同时,项目支持Docker Compose快速部署和Kubernetes生产级编排,集成Sleuth+Zipkin链路追踪与Prometheus+Grafana监控体系,构建可观测性强的微服务系统。; 适合人群:具备Java基础和Spring Boot开发经验,熟悉微服务基本概念的中高级研发人员,尤其是希望深入理解高并发系统设计、分布式事务、服务治理等核心技术的开发者;适合工作2-5年、有志于转型微服务或提升架构能力的工程师; 使用场景及目标:①学习如何基于Spring Cloud Alibaba构建完整的微服务项目;②掌握秒杀场景下高并发、超卖控制、异步化、削峰填谷等关键技术方案;③实践分布式事务(Seata)、服务熔断降级、链路追踪、统一配置中心等企业级中间件的应用;④完成从本地开发到容器化部署的全流程落地; 阅读建议:建议按照文档提供的七个阶段循序渐进地动手实践,重点关注秒杀流程设计、服务间通信机制、分布式事务实现和系统性能优化部分,结合代码调试与监控工具深入理解各组件协作原理,真正掌握高并发微服务系统的构建能力。
在计算机系统中,数值一律用补码来表示和存储。原因在于,使用补码可以将符号位和数值域统一处理,同时加法和减法也可以统一处理。此外,补码与原码相互转换,其运算过程是相同的,不需要额外的硬件电路[^1]。 ### 补码的优势 1. **统一处理符号位和数值域**:补码将符号位和数值部分统一处理,简化了计算机的设计和实现。在补码表示中,正数和负数的符号位被自然地融入了数值的表示中,使得运算逻辑更加简单[^1]。 2. **统一加法和减法**:通过补码,加法和减法运算可以统一为加法操作。例如,计算 $ 3 + (-2) $ 可以直接通过补码相加实现,结果仍然正确。这种特性使得计算机只需要实现加法器,而不需要单独的减法器,从而降低了硬件复杂度[^3]。 3. **避免零的多重表示**:在原码和反码表示中,存在 $ +0 $ 和 $ -0 $ 两种不同的表示形式,这可能会导致计算错误。而补码解决了这个问题,确保零只有一种表示形式,进一步提高了计算的准确性[^4]。 4. **扩展数值范围**:补码表示能够多表示一个最低数。例如,在8位二进制中,原码或反码表示的范围为 $[-127, +127]$,而补码表示的范围为 $[-128, 127]$。这种扩展能力使得补码能够更有效地利用有限的二进制位数[^4]。 5. **溢出处理**:在补码运算中,溢出并不会影响结果的正确性。例如,在8位计算机上计算 $ 16 + (-8) $,通过补码加法可以得到正确的结果 $ 8 $。溢出的高位会被自动舍去,而不会影响最终结果[^5]。 ### 示例:补码加法 以下是一个简单的补码加法示例,计算 $ 3 + (-2) $: ```python # 3 的补码表示(8位) a = 0b00000011 # -2 的补码表示(8位) b = 0b11111110 # 补码加法 result = a + b # 输出结果(补码形式) print(f"结果的补码表示: {result:08b}") # 转换为十进制 print(f"结果的十进制值: {result}") ``` 运行结果: ``` 结果的补码表示: 00000001 结果的十进制值: 1 ``` 该示例验证了补码加法的正确性,通过简单的加法操作即可实现减法运算[^3]。 ### 总结 补码在计算机中的广泛应用得益于其统一的符号位处理、加法减法统一、零的唯一表示、扩展的数值范围以及对溢出的有效处理。这些优势使得补码成为计算机系统中最常用的数值表示方式。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值