1、优化问题三要素:
决策变量、目标函数、约束
2、单、多目标优化的关系:
多目标优化问题的各个子目标之间是矛盾的 ,一个子目标的改善有可能会引起另一个或者另几个子目标的性能降低 , 也就是要同时使多个子目标一起达到最优值是不可能的 , 而只能在它们中间进行协调和折中处理 , 使各个子目标都尽可能地达到最优化。其与单目标优化问题的本质区别在于 ,它的解并非唯一 ,而是存在一组由众多 Pareto最优解组成的最优解集合 ,集合中的各个元素称为 Pareto最优解或非劣最优解。
3、不同算法在多目标优化中的应用 :
多目标优化问题不存在唯一的全局最优解 ,过多的非劣解是无法直接应用的 ,所以在求解时就是要寻找一个最终解。求最终解主要有三类方法 :
a)生成法 ,即先求出大量的非劣解 ,构成非劣解的一个子集 ,然后按照决策者的意图找出最终解 ;
b)为交互法 ,不先求出很多的非劣解 ,而是通过分析者与决策者对话的方式逐步求出最终解 ;
c)是事先要求决策者提供目标之间的相对重要程度 即权重,算法以此为依据 ,将多目标问题转换为单目标问题进行求解。而这些主要是通过算法来实现的 ,一直以来很多专家学者采用不同算法解决多目标优化问题 ,如多目标进化算法、多目标粒子群算法和蚁群算法、模拟退火算法及人工免疫系统等。
4、优化问题分类:
数量:
单目标优化问题;多目标优化有多个评测函数的存在,而且使用不同的评测函数的解,也是不同的。也即是说:多目标优化问题中,同时存在多个最大化或是最小化的目标函数,并且,这些目标函数并不是相