Nim博弈
求先手赢,开局有几种策略。
^值为0,则先手输
不为0的话,先手赢。
那么先手想要走一步后,还要胜态,那么要通过取走一些石子使得异或和=0,
只要满足a[i]>其余堆的^就可以
设t是全部堆的^,a[i]^t
#include <cstdio>
#include <algorithm>
#include <iostream>
#include <vector>
using namespace std;
typedef long long ll;
int a[1005];
int main()
{
int n;
while(scanf("%d",&n),n)
{
int t=0;
for(int i=0;i<n;i++)
{
scanf("%d",&a[i]);
t^=a[i];
}
if(!t)
{
puts("0");
continue;
}
int ans=0;
for(int i=0;i<n;i++)
{
if(a[i]>(a[i]^t))
ans++;
}
printf("%d\n",ans);
}
}
本文探讨了Nim博弈中先手玩家获胜的策略。通过计算各堆石子数量的异或值来判断游戏状态,若该值不为零,先手玩家可通过特定策略确保胜利。文章还提供了一个C++实现示例。
360

被折叠的 条评论
为什么被折叠?



