在工作用了tensorboard来可视化模型训练过程后,发现还挺香的。另外pytorch也正式支持tensorboard了,这里记录一下。
前置条件
安装tensorboard:
pip install tensorboard
实现步骤
- 指定tensorboard输出日志:
writer = SummaryWriter(log_dir=LOG_DIR) - 将模型和数据集添加到writer中:
writer.add_graph(model, images.to(device)) - 记录过程数据指标:
writer.add_scalar('Test Loss', avg_loss, epoch) - 当模型开始训练后,启动tensorboard:
tensorboard --logdir=runs。打开链接就能看到模型过程指标了:http://localhost:6006/
代码示例
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
from torch.utils.tensorboard import SummaryWriter
from datetime import datetime
# 1. 设置参数
BATCH_SIZE = 64
EPOCHS = 100
LEARNING_RATE = 0.001
NUM_CLASSES = 10
LOG_DIR = "runs/fashion_mnist_experiment_" + datetime.now().strftime("%Y%m%d_%H%M%S")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# 2. 准备数据集
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))
])
train_set = torchvision.datasets.FashionMNIST(
root='./data',
train=True,
download=True,
transform=transform
)
test_set = torchvision

最低0.47元/天 解锁文章

被折叠的 条评论
为什么被折叠?



