题目要求:
求一个数组的最长递减子序列;
比如{9,4,3,2,5,4,3,2}的最长递减子序列为{9,5,4,3,2}。
代码实现:
代码1:动态规划,时间复杂度O(N^2).
#include <iostream>
using namespace std;
const int N = 8;
int Lis(int a[],int n);
int main(void)
{
int a[] = {1,-1,2,1,4,-5,6,-7};
cout << Lis(a,N) << endl;
return 0;
}
int Lis(int a[],int n)
{
int *B = new int[n];
int i,j,max;
for(i = 0;i<n;i++)
{
B[i] = 1;
for(j = 0;j<i;j++)
{
if(a[i]<a[j] && B[j]+1>B[i])
B[i] = B[j]+1;
}
}
max = B[0];
for(i = 1;i<n;i++)
{
if(max<B[i])
max = B[i];
}
return max;
}
代码2:使用二分搜索提速,时间复杂度O(N*logN).
#include <iostream>
using namespace std;
const int N = 8;
int Lis(int a[],int n);
int main(void)
{
int a[] = {1,-1,2,1,4,-5,6,-7};
cout << Lis(a,N) << endl;
return 0;
}
int Lis(int a[],int n)
{
int *B = new int[n];
int i,left,right,mid,len = 1;
B[0] = INT_MAX;
B[1] = a[0];
for(i = 1;i<n;i++)
{
left = 0;
right = len;
while(left<=right)
{
mid = (left+right)/2;
if(B[mid]>a[i])
left = mid+1;
else
right = mid-1;
}
B[left] = a[i];
if(left>len)
len++;
}
return len;
}