oracle 分析函数

create table students(
    id number(15,0),
    area varchar2(10),
    stu_type varchar2(10),
    score number(20,2)
);

insert into students values(1, '密云', '数学', 80 );
insert into students values(1, '密云', '语文', 80 );
insert into students values(1, '怀柔', '数学', 89 );
insert into students values(1, '怀柔', '语文', 68 );
insert into students values(2, '密云', '数学', 80 );
insert into students values(2, '密云', '语文', 70 );
insert into students values(2, '怀柔', '数学', 60 );
insert into students values(2, '怀柔', '语文', 65 );
insert into students values(3, '密云', '数学', 75 );
insert into students values(3, '密云', '语文', 58 );
insert into students values(3, '怀柔', '数学', 58 );
insert into students values(3, '怀柔', '语文', 90 );
insert into students values(4, '密云', '数学', 89 );
insert into students values(4, '密云', '语文', 90 );
insert into students values(4, '怀柔', '数学', 90 );
insert into students values(4, '怀柔', '语文', 89 );

select id,area,stu_type,sum(score) score
from students
group by grouping sets((id,area,stu_type),(id,area),id)
order by id,area nulls first,stu_type nulls first ;

select id,area,stu_type,sum(score) score,GROUPING(ID),GROUPING(area),GROUPING(stu_type)
from students
 GROUP BY ROLLUP (ID,area,stu_type)

select id,area,stu_type,sum(score) score
from students
group by GROUPING SETS((id,area,stu_type),(id,area))
order by id,area nulls first,stu_type nulls first ;

select id,area,stu_type,sum(score) score
from students
group by rollup(id,area,stu_type)
order by ID nulls first,area nulls first,stu_type nulls first ;

select id,area,stu_type,sum(score) score
from students
group by cube(id,area,stu_type)
order by ID nulls first,area nulls first,stu_type nulls first ;

select id,area,stu_type,sum(score) score,GROUPING(ID)||GROUPING(area)||GROUPING(stu_type)
from students
group by cube(id,area,stu_type)

select decode(grouping(id),1,'all id',id) id,
decode(grouping(area),1,'all area',to_char(area)) area,
decode(grouping(stu_type),1,'all_stu_type',stu_type) stu_type,
sum(score) score
from students
group by cube(id,area,stu_type)
order by id,area,stu_type;

--允许并列名次、名次不间断,DENSE_RANK(),结果如122344456
select id,area,score,
dense_rank() over(partition by id order by score desc) 分组id排序,
dense_rank() over(order by score desc) 不分组排序
from students order by id,area;

--不允许并列名次、相同值名次不重复,ROW_NUMBER(),结果如123456……
select id,area,score,
row_number() over(partition by id order by score desc) 分组id排序,
row_number() over(order BY score desc) 不分组排序
from students order by id,area;

--允许并列名次、复制名次自动空缺,rank(),结果如12245558……
select id,area,score,
rank() over(partition by id order by score desc) 分组id排序,
rank() over(order by score desc) 不分组排序
from students order by id,area;

--名次分析,cume_dist()——-最大排名/总个数
select id,area,score,
cume_dist() over(order by id) a, --按ID最大排名/总个数
cume_dist() over(partition by id order by score desc) b, --ID分组中,scroe最大排名值/本组总个数
row_number() over (order by id) 记录号
from students order by id,area;

--利用cume_dist(),允许并列名次、复制名次自动空缺,取并列后较大名次,结果如22355778……
select id,area,score,
sum(1) over() as 总数,
sum(1) over(partition by id) as 分组个数,
(cume_dist() over(partition by id order by score desc))*(sum(1) over(partition by id)) 分组id排序,
(cume_dist() over(order by score desc))*(sum(1) over()) 不分组排序
from students order by id,area

--分组统计 sum(),max(),avg(),RATIO_TO_REPORT()
select id,area,score,
sum(1) over() as 总记录数,
sum(1) over(partition by id) as 分组记录数,
sum(score) over() as 总计 ,
sum(score) over(partition by id) as 分组求和,
sum(score) over(order by id) as  分组连续求和,
sum(score) over(partition by id,area) as 分组ID和area求和,
sum(score) over(partition by id,area,stu_type order by id,area,stu_type) as 连续求和,
sum(score) over(partition by id order by area) as 分组ID并连续按area求和,
max(score) over() as 最大值,
max(score) over(partition by id) as 分组最大值,
max(score) over(order by id) as 分组连续最大值,
max(score) over(partition by id,area) as 分组ID和area求最大值,
max(score) over(partition by id order by area) as 分组ID并连续按area求最大值,
avg(score) over() as 所有平均,
avg(score) over(partition by id) as 分组平均,
avg(score) over(order by id) as 分组连续平均,
avg(score) over(partition by id,area) as 分组ID和area平均,
avg(score) over(partition by id order by area) as 分组ID并连续按area平均,
RATIO_TO_REPORT(score) over() as "占所有%",
RATIO_TO_REPORT(score) over(partition by id) as "占分组%"
from students;

--LAG(COL,n,default)、LEAD(OL,n,default) --取前后边N条数据
--取前面记录的值:lag(score,n,x) over(order by id)
--取后面记录的值:lead(score,n,x) over(order by id)
--参数:n表示移动N条记录,X表示不存在时填充值,iD表示排序列
select id,lag(score,1,0) over(order by id) lg,score from students;
select id,lead(score,1,0) over(order by id) lg,score from students;

--FIRST_VALUE()、LAST_VALUE()
--取第起始1行值:first_value(score,n) over(order by id)
--取第最后1行值:LAST_value(score,n) over(order by id)
select id,first_value(score) over(order by id) fv,score from students;
select id,last_value(score) over(order by id) fv,score from students;

--sum(...) over ...
--连续求和
select id,score,area,sum(score) over(order by id,area) aa,sum(score) OVER () bb,
       100*round(score/sum(score) over (ORDER BY ID,area),4) "组内份额(%)",
       100*round(score/sum(score) over (),4) "份额(%)"
 from students;
 
 select id,score,area,sum(score) over(order by id,area) aa,sum(score) OVER () bb,
       sum(score) over (ORDER BY ID,area,stu_type) "连续求和"
 from students;
 

 

内容概要:本文介绍了ENVI Deep Learning V1.0的操作教程,重点讲解了如何利用ENVI软件进行深度学习模型的训练与应用,以实现遥感图像中特定目标(如集装箱)的自动提取。教程涵盖了从数据准备、标签图像创建、模型初始化与训练,到执行分类及结果优化的完整流程,并介绍了精度评价与通过ENVI Modeler实现一键化建模的方法。系统基于TensorFlow框架,采用ENVINet5(U-Net变体)架构,支持通过点、线、面ROI或分类图生成标签数据,适用于多/高光谱影像的单一类别特征提取。; 适合人群:具备遥感图像处理基础,熟悉ENVI软件操作,从事地理信息、测绘、环境监测等相关领域的技术人员或研究人员,尤其是希望将深度学习技术应用于遥感目标识别的初学者与实践者。; 使用场景及目标:①在遥感影像中自动识别和提取特定地物目标(如车辆、建筑、道路、集装箱等);②掌握ENVI环境下深度学习模型的训练流程与关键参数设置(如Patch Size、Epochs、Class Weight等);③通过模型调优与结果反馈提升分类精度,实现高效自动化信息提取。; 阅读建议:建议结合实际遥感项目边学边练,重点关注标签数据制作、模型参数配置与结果后处理环节,充分利用ENVI Modeler进行自动化建模与参数优化,同时注意软硬件环境(特别是NVIDIA GPU)的配置要求以保障训练效率。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值