数据仓库中的指标体系介绍

文章目录
前言
数据仓库的指标体系(或指标体系设计)通常属于 数据建模阶段 的一部分。具体来说,它属于数据仓库构建的以下步骤:
需求分析阶段–>指标体系设计–>数据建模阶段–>数据加载与计算–>数据展示与分析
什么是指标体系


指标体系设计有哪些模型?
我基于 Oracle 11g 数据库中 SCOTT 用户 的表(如 EMP、DEPT、SALGRADE 等),针对每种指标体系拆解模型举的具体实例:
1. 指标分层模型
应用场景: 构建企业组织中的分层指标体系。
案例:
战略层: 提升公司总薪资水平(如平均薪资增长 10%)。
战术层: 按部门分析各部门平均薪资的增长(DEPT 表中的部门)。
运营层: 按员工分析个人薪资的增长(EMP 表中的员工薪资)
-- 查询战略层(全公司平均薪资)
SELECT AVG(SAL) AS AVG_SAL FROM EMP;
-- 查询战术层(按部门分层)
SELECT DNAME, AVG(SAL) AS AVG_SAL FROM EMP E JOIN DEPT D ON E.DEPTNO = D.DEPTNO GROUP BY DNAME;
-- 查询运营层(每位员工的薪资)
SELECT EMPNO, ENAME, SAL FROM EMP;
2. 维度模型
应用场景: 通过事实表和维度表分析员工薪资。
案例:
事实表: EMP 表中的薪资(SAL)。
维度表:
部门维度:DEPT 表(部门编号、部门名称、部门位置)。
时间维度:假设有 HIREDATE(入职时间)。
-- 部门维度分析:按部门统计薪资总和
SELECT D.DNAME, SUM(E.SAL) AS TOTAL_SAL
FROM EMP E
JOIN DEPT D ON E.DEPTNO = D.DEPTNO
GROUP BY D.DNAME;
-- 时间维度分析:按年份统计薪资总和
SELECT TO_CHAR(HIREDATE, 'YYYY') AS YEAR, SUM(SAL) AS TOTAL_SAL
FROM EMP
GROUP BY TO_CHAR(HIREDATE, 'YYYY');
3. 指标树模型
应用场景: 分解总薪资指标。
案例:
顶层指标: 全公司薪资总额。
中间层: 部门薪资总额。
底层指标: 员工个人薪资。
-- 顶层指标
SELECT SUM(SAL) AS TOTAL_SAL FROM EMP;
-- 中间层指标
SELECT DNAME, SUM(SAL) AS DEPT_TOTAL_SAL
FROM EMP E JOIN DEPT D ON E.DEPTNO = D.DEPTNO

最低0.47元/天 解锁文章

被折叠的 条评论
为什么被折叠?



