堆和栈

本文详细介绍了C/C++程序中的内存分配机制,包括栈区、堆区、静态区、文字常量区及程序代码区的功能与特点。通过对比栈与堆在申请方式、系统响应、大小限制等方面的差异,帮助读者理解不同内存区域的使用场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

原作者不详,在这里向原作者致敬。

一、预备知识-----程序的内存分配

一个由C/C++编译的程序占用的内存分为下几个部分

1.  栈区 (stack)----由编译器自动分配和释放,存放函数的参数值,局部变量的值等。其操作方式类似于数据结构中的栈。

2.  堆区 (heap)----一般是由程序员分配释放,若程序员不释放,程序结束时可能由OS回收。注意它与数据结构中的堆是两回事,分配方式倒是类似于链表。

3.  静态区  (static)----全局变量和静态变量的存储是放在一起的,初始化的全局变量和静态变量在一块区域,未初始化的全局变量和未初始化的静态变量在相邻的另一块区域。(程序结束之后由系统释放)

4.  文字常量区 ----常量字符串就是放在这里的。(程序结束后由系统释放)

5.  程序代码区 ----存放函数体的二进制代码。

示例程序

int a = 0;
char *p1;
main()
{
    int b;    //栈区
    char s[] = "abc";  //栈区
    char *p2;  //栈区
    char *p3 = "123456";  //123456/0 在常量区, p3在栈区
    static int c = 0;  //全局(静态)初始化区
    p1 = (char*) malloc(10);
    p2 = (char*) malloc(20);  //分配得来的10和20 就在堆区
    strcpy(p1, 123456);  //123456/0 放在常量区,编译器可能会将它与p3所指向的"123456"优化成同一个内存区域.
}


二、堆和栈的理论知识

2.1 申请方式

stack: 由系统自动分配  //例如,声明在函数中的一个局部变量 int b ;  系统自动在栈中为b 开辟空间

heap: 需要程序员自己申请,并指明大小

在 C 中 malloc 函数, 如p1 = (char*) malloc (10);

在 C++中 new 运算符, 如p2 = (char*) new (10);
//注意p1, p2 本身是在栈中的。


2.2 申请后系统的相应

栈:只要栈的剩余空间大于所申请空间,系统将为程序提供内存,否则将报异常提示栈溢出。

堆:首先应该知道操作系统有一个记录空闲内存地址的链表,当系统收到程序的申请时,会遍历该链表,寻找第一个空间大于所申请空间的堆结点,然后将该结点从空闲结点链表中删除,并将该结点的空间分配给内存。另外,对于大多数系统,会在这块内存空间中的首地址处记录本次分配的大小,这样,代码这中的delete 语句才能正确的释放奔内存空间。另外,由于找到的堆结点的大小不一定正好等于申请的大小,系统会自动的将多余的那部分重新放入空闲链表中。


2.3 申请大小的限制

栈:在Windows下,栈是向低地址扩展的数据结构,是一块连续的内存区域。这句话的意思是栈顶的地址和栈最大容量是系统预先规定好的,在Windows下,栈的大小是2M(也有的说是1M,总之是一个编译时就确定的常数),如果申请的空间超过栈的剩余空间时,将提示overflow。因此,能从栈获得的空间较小。

堆:堆是向高地址扩展的数据结构,是不连续的内存区域。这是由于系统是用链表来存储的空间内存地址的,自然是不连续的,而链表的遍历方向是由低地址向高地址。堆的大小受限于计算机系统中有效的虚拟内存。由此可见,堆获得的内存空间比较灵活,也比较大。


2.4 申请效率的比较

栈: 由系统自动分配,速度较快。但是程序员无法控制。

堆: 由new分配的内存,一般速度比较慢,而且容易产生内存碎片,不过用起来最方便。


2.5 堆和栈中的存储内容

栈:在函数调用时,第一个进栈的是主函数中后的下一条指令(函数调用语句的下一条可执行语句)的地址,然后是函数的各个参数,在大多数的C编译器中,参数是由右往左进栈的,然后是函数中的局部变量。注意静态变量不进栈。

堆:一般是在堆的头部用一个字节存放堆的大小,堆中具体内容由程序员安排。


2.6 存取效率的比较

char s1[] = "aaaaaaaaaaaaaa";

char *s2 = "bbbbbbbbbbbbbb";

aaaaaaaaaaaaaa 是在运行时刻赋值的;

bbbbbbbbbbbbbb 是在编译时就确定的;

但是,在以后的存取中,在栈上的数组比指针所指向的字符串(例如堆)快。

比如

#include ""
void main()
{
    char a = 1;
    char c[] = "1234567890";
    char *p = "1234567890";
    a = c[1];
    a = p[1];
    return;
}

对应的汇编代码

10: a = c[1];

00401067 8A 4D F1 mov cl, byte ptr [ebp-0FH]

0040106A 88 3D FC mov byte ptr [ebp-4], cl

11:a = p[1];

0040106D 8B 55 EC mov edx, dword ptr [ebp-14h]

00401070 8A 42 01 mov al, byte ptr [edx+1]

00401073 88 45 FC mov byte ptr [ebp-4], al

第一种在读取时直接就把字符串中的元素读到寄存器cl中,而第二种则要先把指针值读到edx中,再根据edx读取字符,显然慢了。


2.7 小结

堆和栈的区别可以用如下的比喻:

使用栈就像我们去饭馆吃饭,只管点菜(发出申请)、付钱、吃饭(使用),吃饱了就走,不必理会切菜、洗菜等准备工作以及洗碗、刷锅等扫尾工作,他的好处是快捷,但是自由度较小。

使用堆就像自己动手做自己喜欢吃的菜肴,比较麻烦,但是比较符合自己的口味,而且自由度较大。

【基于QT的调色板】是一个使用Qt框架开发的色彩选择工具,类似于Windows操作系统中常见的颜色选取器。Qt是一个跨平台的应用程序开发框架,广泛应用于桌面、移动嵌入式设备,支持C++QML语言。这个调色板功能提供了横竖两种渐变模式,用户可以方便地选取所需的颜色值。 在Qt中,调色板(QPalette)是一个关键的类,用于管理应用程序的视觉样式。QPalette包含了一系列的颜色角色,如背景色、前景色、文本色、高亮色等,这些颜色可以根据用户的系统设置或应用程序的需求进行定制。通过自定义QPalette,开发者可以创建具有独特视觉风格的应用程序。 该调色板功能可能使用了QColorDialog,这是一个标准的Qt对话框,允许用户选择颜色。QColorDialog提供了一种简单的方式来获取用户的颜色选择,通常包括一个调色板界面,用户可以通过滑动或点击来选择RGB、HSV或其他色彩模型中的颜色。 横渐变取色可能通过QGradient实现,QGradient允许开发者创建线性或径向的色彩渐变。线性渐变(QLinearGradient)沿直线从一个点到另一个点过渡颜色,而径向渐变(QRadialGradient)则以圆心为中心向外扩散颜色。在调色板中,用户可能可以通过滑动条或鼠标拖动来改变渐变的位置,从而选取不同位置的颜色。 竖渐变取色则可能是通过调整QGradient的方向来实现的,将原本水平的渐变方向改为垂直。这种设计可以提供另一种方式来探索颜色空间,使得选取颜色更为直观便捷。 在【colorpanelhsb】这个文件名中,我们可以推测这是与HSB(色相、饱度、亮度)色彩模型相关的代码或资源。HSB模型是另一种常见且直观的颜色表示方式,与RGB或CMYK模型不同,它以人的感知为基础,更容易理解。在这个调色板中,用户可能可以通过调整H、S、B三个参数来选取所需的颜色。 基于QT的调色板是一个利用Qt框架其提供的色彩管理工具,如QPalette、QColorDialog、QGradient等,构建的交互式颜色选择组件。它不仅提供了横竖渐变的色彩选取方式,还可能支持HSB色彩模型,使得用户在开发图形用户界面时能更加灵活精准地控制色彩。
标题基于Spring Boot的二手物品交易网站系统研究AI更换标题第1章引言阐述基于Spring Boot开发二手物品交易网站的研究背景、意义、现状及本文方法与创新点。1.1研究背景与意义介绍二手物品交易的市场需求Spring Boot技术的适用性。1.2国内外研究现状概述当前二手物品交易网站的发展现状趋势。1.3论文方法与创新点说明本文采用的研究方法在系统设计中的创新之处。第2章相关理论与技术介绍开发二手物品交易网站所涉及的相关理论关键技术。2.1Spring Boot框架解释Spring Boot的核心概念主要特性。2.2数据库技术讨论适用的数据库技术及其在系统中的角色。2.3前端技术阐述与后端配合的前端技术及其在系统中的应用。第3章系统需求分析详细分析二手物品交易网站系统的功能需求性能需求。3.1功能需求列举系统应实现的主要功能模块。3.2性能需求明确系统应满足的性能指标安全性要求。第4章系统设计与实现具体描述基于Spring Boot的二手物品交易网站系统的设计实现过程。4.1系统架构设计给出系统的整体架构设计各模块间的交互方式。4.2数据库设计详细阐述数据库的结构设计数据操作流程。4.3界面设计与实现介绍系统的界面设计用户交互的实现细节。第5章系统测试与优化说明对系统进行测试的方法性能优化的措施。5.1测试方法与步骤测试环境的搭建、测试数据的准备及测试流程。5.2测试结果分析对测试结果进行详细分析,验证系统是否满足需求。5.3性能优化措施提出针对系统性能瓶颈的优化建议实施方案。第6章结论与展望总结研究成果,并展望未来可能的研究方向改进空间。6.1研究结论概括本文基于Spring Boot开发二手物品交易网站的主要发现成果。6.2展望与改进讨论未来可能的系统改进方向新的功能拓展。
1. 用户与权限管理模块 角色管理: 学生:查看个人住宿信息、提交报修申请、查看卫生检查结果、请假外出登记 宿管人员:分配宿舍床位、处理报修申请、记录卫生检查结果、登记晚归情况 管理员:维护楼栋与房间信息、管理用户账号、统计住宿数据、发布宿舍通知 用户操作: 登录认证:对接学校统一身份认证(模拟实现,用学号 / 工号作为账号),支持密码重置 信息管理:学生完善个人信息(院系、专业、联系电话),管理员维护所有用户信息 权限控制:不同角色仅可见对应功能(如学生无法修改床位分配信息) 2. 宿舍信息管理模块 楼栋与房间管理: 楼栋信息:名称(如 "1 号宿舍楼")、层数、性别限制(男 / 女 / 混合)、管理员(宿管) 房间信息:房间号(如 "101")、户型(4 人间 / 6 人间)、床位数量、已住人数、可用状态 设施信息:记录房间内设施(如空调、热水器、桌椅)的配置与完好状态 床位管理: 床位编号:为每个床位设置唯一编号(如 "101-1" 表示 101 房间 1 号床) 状态标记:标记床位为 "空闲 / 已分配 / 维修中",支持批量查询空闲床位 历史记录:保存床位的分配变更记录(如从学生 A 调换到学生 B 的时间与原因) 3. 住宿分配与调整模块 住宿分配: 新生分配:管理员导入新生名单后,宿管可按专业集中、性别匹配等规则批量分配床位 手动分配:针对转专业、复学学生,宿管手动指定空闲床位并记录分配时间 分配结果公示:学生登录后可查看自己的宿舍信息(楼栋、房间号、床位号、室友列表) 调整管理: 调宿申请:学生提交调宿原因(如室友矛盾、身体原因),选择意向宿舍(需有空位) 审批流程:宿管审核申请,通过后执行床位调换,更新双方住宿信息 换宿记录:保存调宿历史(申请人、原床位、新床位、审批人、时间) 4. 报修与安全管理模块 报修管理: 报修提交:学生选择宿舍、设施类型(如 "
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值