随着市场的逐步成熟,要想保持企业的长期竞争力,运营和产品改进工作需要越来越精细化。
比如,在游戏行业,玩家留存率是一个关键指标,为提升·留存率,需要精细化地分析玩家是哪一步流失的,根据游戏进程推进过程,按照先后顺序设置关键节点,分析各个节点流失情况数据,可以形成一个玩家流失漏斗。有了玩家流失漏斗,我们可以选择流失率高的环节进行进一步精细化分析,找到流失原因,比如机器适配问题,引导缺乏吸引力问题,数值设计问题等,根据这些原因就可以针对性的在产品和运营侧做改进了。
又比如保险行业,为了提高销售效率,可以先通过模型预测用户的销售响应率,然后将用户划分为几等,分别交由不同级别的销售人员跟进。我们现在在谈论的用户画像,产品画像,增长黑客,或者个性化推荐等等,其本质上其实都是在实现更精细化的运营或产品改进。
精细化产品改进和运营对企业应用数据的能力提出了很高的要求,因为这些改进决策的制定不能全凭经验,它们很大程度上还需要建立在坚实的数据分析结果之上。
企业应用数据的能力可以简称为企业数据能力。从整体上看,它应该是由企业数据驱动业务的文化、具有特定技能的人及具有特定功能的IT系统共同构成。
既然市场对于企业的数据能力要求越来越高,那么要如何建设数据能力呢?
为了尝试回答这个问题,我们先看看主要有哪些数据工作内容。
数据工作内容
回顾上面的玩家留存率分析过程&#x