TweenLite的优点

网上关于TweenLite的优点和中文说明及使用教程一堆,但是没几个可跑的例子,请查看以下代码产生的简单的效果,其中TweenLite的包请到http://www.TweenLite.com 下载

<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"
xmlns:local="gs.*"
>
    
    <mx:Script>
    <![CDATA[
        import gs.TweenMax;
        import gs.TweenLite;
        import mx.events.SliderEvent;
        import mx.controls.Alert;
        
        //记录当前放大的ImageBox
        private var currentZoonInBox:ImageBox;
      
       private function resize(value:int):void {
          
               switch(value)
            {
                case 1:
                    TweenLite.to(btn1, 1, { width:150, height:100 } );
                    TweenLite.to(btn2, 1, { width:80,  height:50 } );
                    TweenLite.to(btn3, 1, { width:80,  height:50 });
                break;
                case 2:
                    TweenLite.to(btn2, 1, { width:150, height:100 } );
                    TweenLite.to(btn1, 1, { width:80, height:50 } );
                    TweenLite.to(btn3, 1, { width:80,height:50});
                break;
                case 3:
                    TweenLite.to(btn3, 1, { width:150, height:100 } );
                    TweenLite.to(btn2, 1, { width:80, height:50 } );
                    TweenLite.to(btn1, 1, { width:80,height:50});
                break;
            }        
       }
    ]]>
</mx:Script>
    <mx:Button id="btn1" width="80" height="50" label="AAAA" mouseOver="resize(1)" />
    <mx:Button id="btn2" width="80" height="50"  label="BBBB" mouseOver="resize(2)"/>
    <mx:Button id="btn3" width="80" height="50"  label="CCCC" mouseOver="resize(3)"/>
</mx:Application>

 

//出处:http://www.favzone.com/article.asp?id=86

内容概要:本文介绍了一个基于MATLAB实现的无人机三维路径规划项目,采用蚁群算法(ACO)多层感知机(MLP)相结合的混合模型(ACO-MLP)。该模型通过三维环境离散化建模,利用ACO进行全局路径搜索,并引入MLP对环境特征进行自适应学习启发因子优化,实现路径的动态调整多目标优化。项目解决了高维空间建模、动态障碍规避、局部最优陷阱、算法实时性及多目标权衡等关键技术难题,结合并行计算参数自适应机制,提升了路径规划的智能性、安全性和工程适用性。文中提供了详细的模型架构、核心算法流程及MATLAB代码示例,涵盖空间建模、信息素更新、MLP训练融合优化等关键步骤。; 适合人群:具备一定MATLAB编程基础,熟悉智能优化算法神经网络的高校学生、科研人员及从事无人机路径规划相关工作的工程师;适合从事智能无人系统、自动驾驶、机器人导航等领域的研究人员; 使用场景及目标:①应用于复杂三维环境下的无人机路径规划,如城市物流、灾害救援、军事侦察等场景;②实现飞行安全、能耗优化、路径平滑实时避障等多目标协同优化;③为智能无人系统的自主决策环境适应能力提供算法支持; 阅读建议:此资源结合理论模型MATLAB实践,建议读者在理解ACOMLP基本原理的基础上,结合代码示例进行仿真调试,重点关注ACO-MLP融合机制、多目标优化函数设计及参数自适应策略的实现,以深入掌握混合智能算法在工程中的应用方法。
评论 1
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值