传送门
题意
分析
这种树上选点的问题,常规思路就是树上
D
P
DP
DP,
f
[
u
]
[
0
/
1
]
f[u][0/1]
f[u][0/1]表示某个点选或不选
-如果不选择
u
u
u点,那么他对于其余每一个点的影响就是
−
m
-m
−m,但考虑到
m
m
m可能为负数,所以可能会导致这个影响是正的,所以就涉及到是一次砍掉一颗子树还是一个节点一个节点去删除,所以
f
[
u
]
[
1
]
=
m
a
x
(
−
m
,
−
m
∗
s
z
[
u
]
)
f[u][1] = max(-m,-m * sz[u])
f[u][1]=max(−m,−m∗sz[u])
-如果选择
u
u
u点,那么对于每一个子节点,选择
m
a
x
(
f
[
j
]
[
0
]
,
f
[
j
]
[
1
]
)
max(f[j][0],f[j][1])
max(f[j][0],f[j][1])即可
代码
#pragma GCC optimize(3)
#include <bits/stdc++.h>
#define debug(x) cout<<#x<<":"<<x<<endl;
#define dl(x) printf("%lld\n",x);
#define di(x) printf("%d\n",x);
#define _CRT_SECURE_NO_WARNINGS
#define pb push_back
#define mp make_pair
#define all(x) (x).begin(),(x).end()
#define fi first
#define se second
#define SZ(x) ((int)(x).size())
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int, int> PII;
typedef vector<int> VI;
const int INF = 0x3f3f3f3f;
const int N = 2e5 + 10,M = N * 2;
const ll mod = 1000000007;
const double eps = 1e-9;
const double PI = acos(-1);
template<typename T>inline void read(T &a) {
char c = getchar(); T x = 0, f = 1; while (!isdigit(c)) {if (c == '-')f = -1; c = getchar();}
while (isdigit(c)) {x = (x << 1) + (x << 3) + c - '0'; c = getchar();} a = f * x;
}
int gcd(int a, int b) {return (b > 0) ? gcd(b, a % b) : a;}
int n,m;
int h[N],e[M],ne[M],idx;
ll sz[N],a[N];
ll f[N][2]; //0 选 1 不选
void add(int x,int y){
ne[idx] = h[x],e[idx] = y,h[x] = idx++;
}
void pp(int u,int fa){
sz[u] = 1;
for(int i = h[u];~i;i = ne[i]){
int j = e[i];
if(j == fa) continue;
pp(j,u);
sz[u] += sz[j];
}
}
void dfs(int u,int fa){
f[u][0] = a[u],f[u][1] = max(-1ll * m,-1ll * m * sz[u]);
for(int i = h[u];~i;i = ne[i]){
int j = e[i];
if(j == fa) continue;
dfs(j,u);
f[u][0] += max(f[j][1],f[j][0]);
}
}
int main() {
int T;
read(T);
while(T--){
read(n),read(m);
for(int i = 1;i <= n;i++) h[i] = -1,sz[i] = 0,f[i][1] = f[i][0] = 0,read(a[i]);
idx = 0;
for(int i = 1;i < n;i++){
int x,y;
read(x),read(y);
add(x,y),add(y,x);
}
pp(1,0);
dfs(1,0);
dl(max(f[1][0],f[1][1]));
}
return 0;
}