传送门
题意
略
分析
可以用背包的思想去考虑
每一个数有两种决策,选或者不选,我们去枚举当前的和
j
j
j,那么不难写出状态转移方程
f
[
i
]
[
j
]
=
f
[
i
−
1
]
[
j
]
∗
2
+
f
[
i
−
1
]
[
j
−
a
[
i
]
]
f[i][j] = f[i - 1][j] * 2 + f[i - 1][j - a[i]]
f[i][j]=f[i−1][j]∗2+f[i−1][j−a[i]]
代码
#pragma GCC optimize(3)
#include <bits/stdc++.h>
#define debug(x) cout<<#x<<":"<<x<<endl;
#define dl(x) printf("%lld\n",x);
#define di(x) printf("%d\n",x);
#define _CRT_SECURE_NO_WARNINGS
#define pb push_back
#define mp make_pair
#define all(x) (x).begin(),(x).end()
#define fi first
#define se second
#define SZ(x) ((int)(x).size())
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int, int> PII;
typedef vector<int> VI;
const int INF = 0x3f3f3f3f;
const int N = 3e3 + 10;
const ll mod = 998244353;
const double eps = 1e-9;
const double PI = acos(-1);
template<typename T>inline void read(T &a) {
char c = getchar(); T x = 0, f = 1; while (!isdigit(c)) {if (c == '-')f = -1; c = getchar();}
while (isdigit(c)) {x = (x << 1) + (x << 3) + c - '0'; c = getchar();} a = f * x;
}
int gcd(int a, int b) {return (b > 0) ? gcd(b, a % b) : a;}
int n,s;
int a[N];
ll f[N][N];
int main() {
read(n),read(s);
for(int i = 1;i <= n;i++) read(a[i]);
f[0][0] = 1;
for(int i = 1;i <= n;i++){
for(int j = 0;j <= s;j++) f[i][j] = (2 * f[i - 1][j]) % mod;
for(int j = a[i];j <= s;j++) f[i][j] = (f[i][j] + f[i - 1][j - a[i]]) % mod;
}
dl(f[n][s]);
return 0;
}