EC318: Labour Economics - Test 1 2024C/C++

部署运行你感兴趣的模型镜像

Java Python Assessment criteria

EC318: Labour Economics

1.    Basic details

Assessment type

Test 1

Deadline

16 February 2024

Weighting

10%

2.   Questions/required work

The testis 1-hour long. It is an MCQ test.

Answer ALL 15 multiple choice questions. Each question is worth 5 marks.

For each question, you will choose one or two from 4 possible choices. Choosing ALL correct

choices will give you 5 marks. Choosing 1 of the 2 correct choices will give you 2 marks. An incorrect choice will receive a zero mark. Entering no choice will yield a mark of zero.

3.   Assessment criteria

Your work will be assessed on the following criteria:

Subject Knowledge and Understanding

Your understanding of key theories in the analysis of  labour markets and knowledge of empirical evidence and your capacity to evaluate critically the evidence   available.

Subject Knowledge and Understanding

Your knowledge of the operation of both supply < EC318: Labour Economics - Test 1 2024C/C++ span >and demand in the labour market, and the limitations of  the models.

Subject Knowledge and Understanding

Your understanding of theories which seek to model,

understand and explain heterogeneity in labour market behaviour.

Subject Knowledge and Understanding

Your knowledge of research issues: Familiarity with  contemporary debates and latest research in labour economics. Understanding of how to approach an    economic problem from the perspective of a

contemporary researcher in economics.

Subject Specific and Professional Skills

Your demonstration of evaluation of economic models and policies.

Subject Specific and Professional Skills

Your demonstration of understanding of different    hypotheses and how they are tested in the relevant literature.

Cognitive Skills

Your ability to show understanding of key theories in the analysis of labour markets and knowledge of

empirical evidence and your capacity to evaluate critically the evidence available.

Cognitive Skills

Your ability to demonstrate policy evaluation and the analysis of institutions.

Key Skills

Your ability to demonstrate use of library and internet as information sources         

您可能感兴趣的与本文相关的镜像

Python3.8

Python3.8

Conda
Python

Python 是一种高级、解释型、通用的编程语言,以其简洁易读的语法而闻名,适用于广泛的应用,包括Web开发、数据分析、人工智能和自动化脚本

聚类分析输出====================================================================== 聚类分析结果总结 ====================================================================== 1. K-means聚类结果 (k=3): - 惯性值: 560.76 - 轮廓系数: 0.212 - 各聚类国家分布:1 (19个国家): Australia, Austria, Belgium, Canada, Denmark, Finland, France, Germany, Iceland, Ireland, Luxembourg, Netherlands, New Zealand, Norway, OECD - Total, Sweden, Switzerland, United Kingdom, United States 类2 (17个国家): Chile, Czechia, Estonia, Greece, Hungary, Israel, Italy, Japan, Korea, Latvia, Lithuania, Poland, Portugal, Russia, Slovak Republic, Slovenia, Spain 类3 (6个国家): Brazil, Colombia, Costa Rica, Mexico, South Africa, Türkiye 2. 层次聚类结果: - 轮廓系数: 0.210 3. DBSCAN聚类结果: - eps值: 10.27 - 聚类数量: 1- 噪声点数量: 0个 - 轮廓系数: -1.000 4. K-means聚类特征分析 (各聚类在主要指标上的均值):1特征: 优势指标 (Top3): • Life satisfaction: 0.85 (高于平均: True) • Household net adjusted disposable income: 0.84 (高于平均: True) • Self-reported health: 0.63 (高于平均: True) 劣势指标 (Bottom3): • Air pollution: -0.70 (高于平均: False) • Labour market insecurity: -0.52 (高于平均: False) • Homicide rate: -0.36 (高于平均: False) 类2特征: 优势指标 (Top3):Labour market insecurity: 0.48 (高于平均: True) • Air pollution: 0.34 (高于平均: True) • Educational attainment: 0.29 (高于平均: True) 劣势指标 (Bottom3): • Self-reported health: -0.77 (高于平均: False) • Household net adjusted disposable income: -0.59 (高于平均: False) • Life satisfaction: -0.48 (高于平均: False) 类3特征: 优势指标 (Top3): • Homicide rate: 2.02 (高于平均: True) • Air pollution: 1.24 (高于平均: True) • Long-term unemployment rate: 0.73 (高于平均: True) 劣势指标 (Bottom3): • Educational attainment: -1.96 (高于平均: False) • Employment rate: -1.74 (高于平均: False) • Life expectancy: -1.36 (高于平均: False) 5. 结果文件已保存: - 聚类分析可视化图表: Cluster_Analysis.png - K-means聚类结果: KMeans_cluster_results.csv - 层次聚类结果: Hierarchical_cluster_results.csv - DBSCAN聚类结果: DBSCAN_cluster_results.csv - 聚类质量指标: Cluster_quality_metrics.csv
12-29
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值