前言
这周开始车牌号的识别。
数据集
The number of images in a training set is: 10944
The number of images in a test set is: 2736
The number of batches per epoch is: 684
from torchvision.transforms import transforms
from torch.utils.data import DataLoader
from torchvision import datasets
import torchvision.models as models
import torch.nn.functional as F
import torch.nn as nn
import torch,torchvision
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
import os,PIL,random,pathlib
import matplotlib.pyplot as plt
# 支持中文
plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号
data_dir = '015_licence_plate'
data_dir = pathlib.Path(data_dir)
data_paths = list(data_dir.glob('*'))
classeNames = [str(path).split("\\")[1].split("_")[1].split(".")[0] for path in data_paths]
print(classeNames)
data_paths = list(data_dir.glob('*'))
data_paths_str = [str(path) for path in data_paths]
# plt.figure(figsize=(14, 5))
# plt.suptitle("数据示例", fontsize=15)
# for i in range(18):
# plt.subplot(3, 6, i + 1)
# # plt.xticks([])
# # plt.yticks([])
# # plt.grid(False)
#
# # 显示图片
# images = plt.imread(data_paths_str[i])
# plt.imshow(images)
#
# plt.show()
import numpy as np
char_enum = ["京","沪","津","渝",