云HBase小组成功抢救某公司自建HBase集群,挽救30+T数据

本文分享了一次HBase集群故障恢复的过程,集群因大量冗余数据导致无法启动。通过定位问题、制定方案并实施,最终成功恢复集群,避免了重装及数据重导。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

原文链接:https://yq.aliyun.com/articles/582093?spm=a2c4e.11155435.0.0.10bb33129xTVdb


概述

    使用过开源HBase的人都知道,运维HBase是多么复杂的事情,集群大的时候,读写压力大,配置稍微不合理一点,就可能会出现集群状态不一致的情况,糟糕一点的直接导致入库、查询某个业务表不可用, 甚至集群运行不了。在早期0.9x版本的时候,HBase的修复工具还有一下bug,使得即使你懂得如何修复的情况下,依然需要多次重复运行命令,绕过那些不合理的修复逻辑,甚至有时候需要自己写代码预先修复某个步骤。

背景

    上周五,某公司使用的某DataHup 大数据产品自建一个HBase集群挂了!整个集群有30+T 业务数据,是公司的数据中心,集群直接启动不了。他们也是经历了熬战一天一夜的情况下,依旧没有解决恢复,还曾有过重装集群重导数据念头。最后,通过钉钉HBase技术交流群找到群主——阿里云HBase的封神。随后其立即下达命令,临时成立 HBase抢救小分队,尽力最大的努力,使用最低风险的方式,抢救最 完整的集群。
    蹭蹭蹭,几个抢救队员集齐,开始救火。
f373211c7d10cc569eedab28a527025be2e517f5    ​

救火开始 

    虽然紧急,但是抢救工作不能乱,我们把救火过程主要分为几步:
7bb9576164856f1463755efe63083257c8bc5af3

​1. 定位现象问题所在

    ​首先与用户沟通现场环境情况,以及客户在出问题之前做过哪些重大操作,特别是一些特殊操作,平时没做过的。据用户描述已经远程观察了解到,用户使用开源的某DataHup自建了一个HBase集群, 存储公司的大量的业务,是公司的数据中心。集群有7个RegionServer、2个Master,32核256G的机器配置,业务数据量有30+T。HBase的master已经都挂了,两个
RegionServer也挂了,用户使用过“重启大法”,依旧无法正常运行。
    ​寥寥几句没有更多信息,我们只能上集群开日志,打jstack,观察HBase运行流程为什么中断或者挂掉。
    ​首先我们先检查HDFS文件系统,fsck发现没有什么异常。其次开始检查HBase,把Debug日志打开,全部关闭HBase集群,为了便于观察现象,只启动一个Master和一个RegionServer。启动后,发现Master 因为fullscan meta表(master启动的一个流程)timeout Abort 终止了。观察meta region分配到的RegionServer也挂了,查看日志并没有异常,貌似是这个开源的DataHup 当RegionServer scan数据操作超时 会被manager kill掉的样子。打jstack发现,Master确实在等待fullscan meta完成,而接管meta region
的RegionServer确实一直在忙着scan meta数据,确实有忙不过来超时了。按理说,扫描meta表应该很快的才对。
    ​检查发现HDFS的HBase meta表有1T多数据!!!进一步查看现象HFile的内容,发现了大量的Delete famly 的cell存在,而且很多是重复的,序列号(没有截图,想象一下)。问题现象定位了,用户使用这个系列的DataHup 的HBase生态时,有组件存在bug往hbase meta表写了大量的这些冗余的delete数据,导致hbase 启动时full scan meta卡着,最终导致整个集群无法正常启动运行服务。


2. 提出解决方案,评估风险

    我们很快生成了两个相对较优的方案。第一个是使用离线compaction,把hbase meta表进行一次major compaction把多余的delete family删除,然后再重启即可。第二个方案是,直接移除meta 表的无用hfile, 逆向生成meta 表数据进行修复meta表即可。
    ​第一个方案做离线compaction对集群来说没有什么风险,缺点是离线compaction并不快,因为meta表region只有一个,执行离线meta表compaction时只有一个task,非常的缓慢耗时。
    ​第二个方案是逆向修复meta表信息。看似风险很大,其实实际操作起来,很多风险可以降低。我们可以备份好核心的元数据,只有就可以在恢复失败的时候,还原到原来修复手术的前状态。这样一来,这个修复过程也就风险极大降低了。


​​3. 开始实施

    ​秉着更安全风险更低的情况下,我们还是先选择了方案一,给meta表做离线major compaction的方案。但最终因为MapReduce和本地模式的compaction都太慢了,开始会oom,调整后,最终因meta的hfile checksum校验失败中断了。meta表的hfile都存在问题,那么这个compaction过程就不能正常进行了。
    ​我们开始选择方案二,和用户沟通风险后,开始制定操作步骤, 把这个方案的实施带来的风险尽可能降到最低。规避这个方案存在的风险,前提是懂得这个方案会有什么风险。下面我们来分析一下,如图:
70737779d54642cef8061e40dd816fa95ad7b096
    ​可以看到,开源HBase的meta表,是可以逆向生成回来的,但是有可能不同的DataHup生产商可能会有一些额外的信息hack进meta表里,对于这部分信息,在开源的逆向生成过程中是不包含的,存在这个关系数据丢失。但是这些核心的业务数据都存在,只是hack的第三方关联信息不存在了。有人可能会问,会有哪些数据可能hack到这里呢?曾看到过某厂商会在meta表了多加一些额外的字段用来保存virtual hostname信息,还有一些将二级索引相关的信息会保存在tableinfo 文件那里。HBase的开发商越多,什么姿势都可能存在,这个就是可能的风险点。
​    ​接下来我们开始实施,这个问题比较典型,用户的meta表里,有1T多的hfile 数据,检查hfile 发现几乎99%的hfile是delete famly相关的内容,我们就移除这些delete famly的hfile到备份目录,只留下一个正常数据的hfile,而这个hfile也仅仅有30M左右的数据。重启HBase后,正常运行。HBase一致性检查发现很幸运,没有坏文件,也没有丢失的tableinfo、regioninfo、hfile相关的block等。如果发现有文件丢失,corrupt hfile等等问题,逆向生成元数据的修复过程就可能会带来风险,但HBase集群核心业务数据依然可以完整挽救。


4. 用户再自己验证一下是否正常

    通知用户验证集群运行,业务运行情况。


小结

    由于用户的自建HBase集群不像云HBase一样可以我们远程登录管理,只能使用一些远程桌面工具先登录到用户的工作PC再跳到集群环境上,整个操作起来非常的卡顿,影响了问题定位以及最终抢救的效率。
    ​很多用户使用某些开源DataHup自建集群都会碰到各种各样的运维问题,不要害怕,只要HDFS数据不丢失,HBase怎么挂都可以拯救回来的,不用急着格式化HBase集群重装/重导数据。更多HBase 故障恢复技术交流,请关注钉钉HBase技术交流群。


资源下载链接为: https://pan.quark.cn/s/1bfadf00ae14 “STC单片机电压测量”是一个以STC系列单片机为基础的电压检测应用案例,它涵盖了硬件电路设计、软件编程以及数据处理等核心知识点。STC单片机凭借其低功耗、高性价比和丰富的I/O接口,在电子工程领域得到了广泛应用。 STC是Specialized Technology Corporation的缩写,该公司的单片机基于8051内核,具备内部振荡器、高速运算能力、ISP(在系统编程)和IAP(在应用编程)功能,非常适合用于各种嵌入式控制系统。 在源代码方面,“浅雪”风格的代码通常简洁易懂,非常适合初学者学习。其中,“main.c”文件是程序的入口,包含了电压测量的核心逻辑;“STARTUP.A51”是启动代码,负责初始化单片机的硬件环境;“电压测量_uvopt.bak”和“电压测量_uvproj.bak”可能是Keil编译器的配置文件备份,用于设置编译选项和项目配置。 对于3S锂电池电压测量,3S锂电池由三节锂离子电池串联而成,标称电压为11.1V。测量时需要考虑电池的串联特性,通过分压电路将高电压转换为单片机可接受的范围,并实时监控,防止过充或过放,以确保电池的安全和寿命。 在电压测量电路设计中,“电压测量.lnp”文件可能包含电路布局信息,而“.hex”文件是编译后的机器码,用于烧录到单片机中。电路中通常会使用ADC(模拟数字转换器)将模拟电压信号转换为数字信号供单片机处理。 在软件编程方面,“StringData.h”文件可能包含程序中使用的字符串常量和数据结构定义。处理电压数据时,可能涉及浮点数运算,需要了解STC单片机对浮点数的支持情况,以及如何高效地存储和显示电压值。 用户界面方面,“电压测量.uvgui.kidd”可能是用户界面的配置文件,用于显示测量结果。在嵌入式系统中,用
资源下载链接为: https://pan.quark.cn/s/abbae039bf2a 在 Android 开发中,Fragment 是界面的一个模块化组件,可用于在 Activity 中灵活地添加、删除或替换。将 ListView 集成到 Fragment 中,能够实现数据的动态加载与列表形式展示,对于构建复杂且交互丰富的界面非常有帮助。本文将详细介绍如何在 Fragment 中使用 ListView。 首先,需要在 Fragment 的布局文件中添加 ListView 的 XML 定义。一个基本的 ListView 元素代码如下: 接着,创建适配器来填充 ListView 的数据。通常会使用 BaseAdapter 的子类,如 ArrayAdapter 或自定义适配器。例如,创建一个简单的 MyListAdapter,继承自 ArrayAdapter,并在构造函数中传入数据集: 在 Fragment 的 onCreateView 或 onActivityCreated 方法中,实例化 ListView 和适配器,并将适配器设置到 ListView 上: 为了提升用户体验,可以为 ListView 设置点击事件监听器: 性能优化也是关键。设置 ListView 的 android:cacheColorHint 属性可提升滚动流畅度。在 getView 方法中复用 convertView,可减少视图创建,提升性能。对于复杂需求,如异步加载数据,可使用 LoaderManager 和 CursorLoader,这能更好地管理数据加载,避免内存泄漏,支持数据变更时自动刷新。 总结来说,Fragment 中的 ListView 使用涉及布局设计、适配器创建与定制、数据绑定及事件监听。掌握这些步骤,可构建功能强大的应用。实际开发中,还需优化 ListView 性能,确保应用流畅运
资源下载链接为: https://pan.quark.cn/s/f989b9092fc5 牛顿迭代法是一种高效的数值方法,用于求解方程的根,尤其擅长处理一元高次方程。它基于切线逼近原理,通过迭代逐步逼近方程的实根。对于一元三次方程 ax 3 +bx 2 +cx+d=0(其中 a 6 =0),牛顿迭代法可以找到所有可能的实根,而不仅仅是其中一个。三次方程最多有三个实根或复根的组合。 牛顿迭代法的步骤如下: 初始化:选择一个初始值 x 0 ,尽量使其接近实际根。初始值的选择对收敛速度影响很大。 构造迭代公式:迭代公式为 x n+1 =x n − f ′ (x n ) f(x n ) ,其中 f(x) 是方程,f ′ (x) 是其导数。对于一元三次方程,f(x)=ax 3 +bx 2 +cx+d,其导数 f ′ (x)=3ax 2 +2bx+c。 迭代计算:从 x 0 开始,利用迭代公式计算 x 1 ,x 2 ,…,直到满足终止条件,如连续两次迭代的差值小于阈值 ϵ,或达到最大迭代次数。 检查根:每次迭代得到的 x n 可能是根。若 ∣f(x n )∣<ϵ,则认为 x n 是近似根。 在求解一元三次方程时,牛顿迭代法可能会遇到多重根或复根。对于多重根,迭代可能收敛缓慢甚至不收敛,需要特别处理。对于复根,牛顿迭代法可能无法直接找到,因为复数的导数涉及复数除法,通常需要使用牛顿-拉弗森迭代的复数扩展版本。 为了避免陷入局部极值,可以尝试多个不同的初始值进行迭代,从而找到所有实根。牛顿迭代法的收敛性依赖于函数的连续性和二阶导数的存在性,因此在使用前需要满足这些条件。在编程实现时,需考虑数值稳定性以及异常情况的处理,例如分母为零、迭代不收敛等。牛顿迭代法在求解一元三次方程的实根时,表现出了优于其他简单方法的优势。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值