1. 给定一个含不同整数的集合,返回其所有的子集
S = {1,2,3}
0 000 {}
1 001 {1}
2 010 {2}
3 011 {1,2}
4 100 {3}
5 101 {1,3}
6 110 {2,3}
7 111 {1,2,3}
class Solution {
/**
* @param S: A set of numbers.
* @return: A list of lists. All valid subsets.
*/
public List<ArrayList<Integer>> subsets(int[] nums) {
List<ArrayList<Integer>> result = new ArrayList<List<Integer>>();
int n = nums.length;
Arrays.sort(nums);
// 1 << n is 2^n
// each subset equals to an binary integer between 0 .. 2^n - 1
// 0 -> 000 -> []
// 1 -> 001 -> [1]
// 2 -> 010 -> [2]
// ..
// 7 -> 111 -> [1,2,3]
for (int i = 0; i < (1 << n); i++) {
List<Integer> subset = new ArrayList<Integer>();
for (int j = 0; j < n; j++) {
// check whether the jth digit in i's binary representation is 1
if ((i & (1 << j)) != 0) {
subset.add(nums[j]);
}
}
result.add(subset);
}
return result;
}
}
2. ven a string array words
, find the maximum value of length(word[i]) * length(word[j])
where the two words do not share common letters. You may assume that each word will contain only lower case letters. If no such two words exist, return 0.
// Maximum Product of Word Lengths
// Time Complexity: O(n^2), Space Complexity: O(n)
public class Solution {
public int maxProduct(String[] words) {
final int n = words.length;
final int[] hashset = new int[n];
for (int i = 0; i < n; ++i) {
for (int j = 0; j < words[i].length(); ++j) {
hashset[i] |= 1 << (words[i].charAt(j) - 'a');
}
}
int result = 0;
for (int i = 0; i < n; ++i) {
for (int j = i + 1; j < n; ++j) {
int tmp = words[i].length() * words[j].length();
if ((hashset[i] & hashset[j]) == 0 && tmp > result) {
result = tmp;
}
}
}
return result;
}
}
3. Integer Replacement
Given a positive integer n and you can do operations as follow:
- If n is even, replace n with
n/2
. - If n is odd, you can replace n with either
n + 1
orn - 1
.
class Solution {
public:
int integerReplacement(int n) {
int count = 0;
if(n == 0x7fffffff) return 32;
while (n > 1) {
if ((n & 1) == 0) n >>= 1;
else if ((n & 0b11) == 0b11 && (n!=3)) n++;
else n--;
count++;
}
return count;
}
};