类
介绍
Python作用域和命名空间
-
作用域和命名空间示例
初探类
-
类定义语法
-
类对象
-
实例对象
-
方法对象
-
类和实例变量
-
补充说明
继承
-
多重继承
私有变量
介绍
面向对象最重要的概念就是类(Class)和实例(Instance),必须牢记类是抽象的模板,比如Student类,而实例是根据类创建出来的一个个具体的“对象”,每个对象都拥有相同的方法,但各自的数据可能不同。
Python作用域和命名空间
Python使用叫做命名空间的东西来记录变量的轨迹。命名空间是一个 字典(dictionary) ,它的键就是变量名,它的值就是那些变量的值。
在一个 Python 程序中的任何一个地方,都存在几个可用的命名空间。
1、每个函数都有着自已的命名空间,叫做局部命名空间,它记录了函数的变量,包括函数的参数和局部定义的变量。
2、每个模块拥有它自已的命名空间,叫做全局命名空间,它记录了模块的变量,包括函数、类、其它导入的模块、模块级的变量和常量。
3、还有就是内置命名空间,任何模块均可访问它,它存放着内置的函数和异常。
-
命名空间查找顺序
当一行代码要使用变量 x 的值时,Python 会到所有可用的名字空间去查找变量,按照如下顺序:
1、局部命名空间:特指当前函数或类的方法。如果函数定义了一个局部变量 x,或一个参数 x,Python 将使用它,然后停止搜索。
2、全局命名空间:特指当前的模块。如果模块定义了一个名为 x 的变量,函数或类,Python 将使用它然后停止搜索。
3、内置命名空间:对每个模块都是全局的。作为最后的尝试,Python 将假设 x 是内置函数或变量。
4、如果 Python 在这些名字空间找不到 x,它将放弃查找并引发一个 NameError 异常,如,NameError: name 'aa' is not defined。
-
嵌套函数的情况:
1、先在当前 (嵌套的或 lambda) 函数的命名空间中搜索
2、然后是在父函数的命名空间中搜索
3、接着是模块命名空间中搜索
4、最后在内置命名空间中搜索
-
命名空间的生命周期:
1、内置命名空间在 Python 解释器启动时创建,会一直保留,不被删除。
2、模块的全局命名空间在模块定义被读入时创建,通常模块命名空间也会一直保存到解释器退出。
3、当函数被调用时创建一个局部命名空间,当函数返回结果 或 抛出异常时,被删除。每一个递归调用的函数都拥有自己的命名空间。
Python 的一个特别之处在于其赋值操作总是在最里层的作用域。赋值不会复制数据——只是将命名绑定到对象。删除也是如此:"del y" 只是从局部作用域的命名空间中删除命名 y 。事实上,所有引入新命名的操作都作用于局部作用域。
i = 1
def f1():
i = i + 1
print(i)
f1()
#错误:UnboundLocalError: local variable 'i' referenced before assignment
由于创建命名空间时,python会检查代码并填充局部命名空间。在python运行那行代码之前,就发现了对i的赋值,并把它添加到局部命名空间中。当函数执行时,python解释器认为i在局部命名空间中但没有值,所以会产生错误。
-
命名空间的访问
1、局部命名空间可以 locals() BIF来访问。
locals 返回一个名字/值对的 dictionary。这个 dictionary 的键是字符串形式的变量名字,dictionary 的值是变量的实际值。
i = 1
def f1(i, first):
i = i + 1
print(locals())
f1(1, 'first')#{'first': 'first', 'i': 2}
2、全局 (模块级别)命名空间可以通过 globals() BIF来访问。
import copy
from copy import deepcopy
gstr = 'global string'
def func1(i, info):
x = 12345
print(locals())
func1(1, 'first')
if __name__ == '__main__':
dictionary=globals()
print(dictionary)#{'x': 12345, 'info': 'first', 'i': 1}.....
初探类
类引入了一些新语法,三种新对象类型和一些新语义。
-
类定义语法
最简单的类定义看起来像这样:
class ClassName:
<statement-1>
.
.
.
<statement-N>
类定义与函数定义 (def
语句) 一样必须被执行才会起作用。
当进入类定义时,将创建一个新的命名空间,并将其用作局部作用域 --- 因此,所有对局部变量的赋值都是在这个新命名空间之内。 特别的,函数定义会绑定到这里的新函数名称。
-
类对象
类对象支持两种操作:属性引用和实例化。
属性引用 使用 Python 中所有属性引用所使用的标准语法: obj.name
。
有效的属性名称是类对象被创建时存在于类命名空间中的所有名称。 因此,如果类定义是这样的:
class MyClass:
'''A simple example class'''
i = 12345
def f(self):
return 'hello world'
那么 MyClass.i
和 MyClass.f
就是有效的属性引用,将分别返回一个整数和一个函数对象。 类属性也可以被赋值,因此可以通过赋值来更改 MyClass.i
的值。 __doc__
也是一个有效的属性,将返回所属类的文档字符串: "A simpleexample class"
。
类的 实例化 是使用函数表示法。 可以相像类对象就是会返回一个新的类实例的不带参数的函数。
X = MyClass()
创建类的新 实例 并将此对象分配给局部变量 x
。
实例化操作(“调用”类对象)会创建一个空对象。 许多类喜欢创建带有特定初始状态的自定义实例。 为此类定义可能包含一个名为 __init__()
的特殊方法,就像这样:
def __init__(self):
self.data = []
当然,__init__()
方法还可以有额外参数以实现更高灵活性。 在这种情况下,提供给类实例化运算符的参数将被传递给 __init__()
。 例如,:
class Complex:
def __init__(self, realpart, imagpart):
self.r = realpart
self.i = imagpart
x = Complex(3.0, -4.5)
x.r, x.i#(3.0, -4.5)
-
实例对象
实例对象理解的唯一操作是属性引用。有两种有效的属性名称,数据属性和方法。数据属性 对应于 Smalltalk 中的“实例变量”,以及 C++ 中的“数据成员”。 数据属性不需要声明;像局部变量一样,它们将在第一次被赋值时产生。 例如,如果 x
是上面创建的 MyClass
的实例,则以下代码段将打印数值 16
,且不保留任何追踪信息:
x.counter = 1
while x.counter < 10:
x.counter = x.counter * 2
print(x.counter)
del x.counter
另一类实例属性引用称为 方法。 方法是“从属于”对象的函数。 (在 Python 中,方法这个术语并不是类实例所特有的:其他对方也可以有方法。 例如,列表对象具有 append, insert, remove, sort 等方法。 然而,在以下讨论中,我们使用方法一词将专指类实例对象的方法,除非另外显式地说明。)
实例对象的有效方法名称依赖于其所属的类。 根据定义,一个类中所有是函数对象的属性都是定义了其实例的相应方法。 因此在我们的示例中,x.f
是有效的方法引用,因为 MyClass.f
是一个函数,而 x.i
不是方法,因为 MyClass.i
不是一个函数。 但是 x.f
与 MyClass.f
并不是一回事 --- 它是一个 方法对象,不是函数对象。
-
方法对象
通常,方法在绑定后立即被调用:
x.f()
在 MyClass
示例中,这将返回字符串 'hello world'
。 但是,立即调用一个方法并不是必须的: x.f
是一个方法对象,它可以被保存起来以后再调用。 例如:
xf = x.f
while True:
print(xf())
将继续打印 hello world
,直到结束。
方法的特殊之处就在于实例对象会作为函数的第一个参数被传入。 在我们的示例中,调用 x.f()
其实就相当于 MyClass.f(x)
。 总之,调用一个具有 n 个参数的方法就相当于调用再多一个参数的对应函数,这个参数值为方法所属实例对象,位置在其他参数之前。
-
类和实例变量
一般来说,实例变量用于每个实例的唯一数据,而类变量用于类的所有实例共享的属性和方法:
class Dog:
kind = 'canine' # class variable shared by all instances
def __init__(self, name):
self.name = name # instance variable unique to each instance
>>> d = Dog('Fido')
>>> e = Dog('Buddy')
>>> d.kind # shared by all dogs
'canine'
>>> e.kind # shared by all dogs
'canine'
>>> d.name # unique to d
'Fido'
>>> e.name # unique to e
'Buddy'
正如 名称和对象 中已讨论过的,共享数据可能在涉及 mutable 对象例如列表和字典的时候导致令人惊讶的结果。 例如以下代码中的 tricks 列表不应该被用作类变量,因为所有的 Dog 实例将只共享一个单独的列表:
class Dog:
tricks = [] # mistaken use of a class variable
def __init__(self, name):
self.name = name
def add_trick(self, trick):
self.tricks.append(trick)
>>> d = Dog('Fido')
>>> e = Dog('Buddy')
>>> d.add_trick('roll over')
>>> e.add_trick('play dead')
>>> d.tricks # unexpectedly shared by all dogs
['roll over', 'play dead']
正确的类设计应该使用实例变量:
class Dog:
def __init__(self, name):
self.name = name
self.tricks = [] # creates a new empty list for each dog
def add_trick(self, trick):
self.tricks.append(trick)
>>> d = Dog('Fido')
>>> e = Dog('Buddy')
>>> d.add_trick('roll over')
>>> e.add_trick('play dead')
>>> d.tricks
['roll over']
>>> e.tricks
['play dead']
补充说明
数据属性会覆盖掉具有相同名称的方法属性;为了避免会在大型程序中导致难以发现的错误的意外名称冲突,明智的做法是使用某种约定来最小化冲突的发生几率。 可能的约定包括方法名称使用大写字母,属性名称加上独特的短字符串前缀(或许只加一个下划线),或者是用动词来命名方法,而用名词来命名数据属性。
方法的第一个参数常常被命名为 self
。 这也不过就是一个约定: self
这一名称在 Python 中绝对没有特殊含义。 但是要注意,不遵循此约定会使得你的代码对其他 Python 程序员来说缺乏可读性,而且也可以想像一个 类浏览器 程序的编写可能会依赖于这样的约定。
任何一个作为类属性的函数都为该类的实例定义了一个相应方法。 函数定义的文本并非必须包含于类定义之内:将一个函数对象赋值给一个局部变量也是可以的。 例如:
# Function defined outside the class
def f1(self, x, y):
return min(x, x+y)
class C:
f = f1
def g(self):
return 'hello world'
h = g
现在 f
, g
和 h
都是 C
类的引用函数对象的属性,因而它们就都是 C
的实例的方法 --- 其中 h
完全等同于 g
。 但请注意,本示例的做法通常只会令程序的阅读者感到迷惑。
方法可以通过使用 self
参数的方法属性调用其他方法:
class Bag:
def __init__(self):
self.data = []
def add(self, x):
self.data.append(x)
def addtwice(self, x):
self.add(x)
self.add(x)
继承
当然,如果不支持继承,语言特性就不值得称为“类”。派生类定义的语法如下所示:
class DerivedClassName(BaseClassName):
<statement-1>
.
.
.
<statement-N>
名称 BaseClassName
必须定义于包含派生类定义的作用域中。 也允许用其他任意表达式代替基类名称所在的位置。 这有时也可能会用得上,例如,当基类定义在另一个模块中的时候:
class DerivedClassName(modname.BaseClassName):
派生类定义的执行过程与基类相同。 当构造类对象时,基类会被记住。 此信息将被用来解析属性引用:如果请求的属性在类中找不到,搜索将转往基类中进行查找。 如果基类本身也派生自其他某个类,则此规则将被递归地应用。
派生类的实例化没有任何特殊之处: DerivedClassName()
会创建该类的一个新实例。 方法引用将按以下方式解析:搜索相应的类属性,如有必要将按基类继承链逐步向下查找,如果产生了一个函数对象则方法引用就生效。
Python有两个内置函数可被用于继承机制:
- 使用
isinstance()
来检查一个实例的类型:isinstance(obj, int)
仅会在obj.__class__
为int
或某个派生自int
的类时为True
。 - 使用
issubclass()
来检查类的继承关系:issubclass(bool, int)
为True
,因为bool
是int
的子类。 但是,issubclass(float, int)
为False
,因为float
不是int
的子类。
多重继承
对于多数应用来说,在最简单的情况下,你可以认为搜索从父类所继承属性的操作是深度优先、从左至右的,当层次结构中存在重叠时不会在同一个类中搜索两次。 因此,如果某一属性在 DerivedClassName
中未找到,则会到 Base1
中搜索它,然后(递归地)到 Base1
的基类中搜索,如果在那里未找到,再到 Base2
中搜索,依此类推。
class DerivedClassName(Base1, Base2, Base3):
<statement-1>
.
.
.
<statement-N>
真实情况比这个更复杂一些;方法解析顺序会动态改变以支持对 super()
的协同调用。 这种方式在某些其他多重继承型语言中被称为后续方法调用,它比单继承型语言中的 super 调用更强大
动态改变顺序是有必要的,因为所有多重继承的情况都会显示出一个或更多的菱形关联(即至少有一个父类可通过多条路径被最底层类所访问)。 例如,所有类都是继承自 object
,因此任何多重继承的情况都提供了一条以上的路径可以通向 object
。 为了确保基类不会被访问一次以上,动态算法会用一种特殊方式将搜索顺序线性化, 保留每个类所指定的从左至右的顺序,只调用每个父类一次,并且保持单调(即一个类可以被子类化而不影响其父类的优先顺序)。 总而言之,这些特性使得设计具有多重继承的可靠且可扩展的类成为可能。 要了解更多细节,请参阅 https://www.python.org/download/releases/2.3/mro/。
私有变量
private下标识的变量,类中可以访问,类外不能访问。