灰度直方图
这次我从最基本的直方图讲起,一维直方图,至于二维等高维直方图,仅作为了解,后面有时间另开blog详解。
1:首先我们给出一幅图

其中的数据假设对应一副灰度图片的灰度值,则直方图的作用就是画出在bin范围内取值的个数,如图左边的直方图---相当于我们word中的柱状图。
2:在opencv中直方图的结构为:
typedef struct CvHistogram
{
int type; // 不用管
CvArr* bins;存放直方图在每一维上直方柱的具体数据,由于存在多维直方图。如果是一维直方图,那么bins就是一个一维的矩阵;如果是二维直方图,那么bins就是一个二维的矩阵,等等。
float thresh[CV_MAX_DIM][2]; /* 直方柱的划分 是统一划分的,即均等划分的 */
float** thresh2; /*不均等划分,可以自动设定每一个直方柱的取值范围。之所以是二级指针,每一个柱的取值范围用一级指针表示,又存在多个直方柱,所以需要二级指针才能表示。每一个不在指定范围的值,会被忽略掉。*/
CvMatND mat; /* 存放直方图的数据 */
}
3:直方图的创建:
CvHistogram* cvCreateHist( int dims, int* sizes, int type, float** ranges=NULL, int uniform=1);
其中:
dims:表示直方图的维度
sizes:每一维上直方柱(bin)的数据 ----- 创建多大的矩阵 如一维则size[0] =256
二维:则size[0]=256,size[1] = 256;;
type ---- 创建一个什么样的矩阵
直方图存储数据的方式:
CV_HIST_ARRAY意味着直方图数据表示为多维密集数组CvMatND;
CV_HIST_TREE 意味着直方图数据表示为多维稀疏数组CvSparseMat.---- 大于0才开设相应的空间存储它<高维的必选它>
Ranges:
直方图在每一维度上的范围。
如果是一维则代码为:
Floatrange[] = {0,255};
Float*ranges[]={range};
如果是二维则代码为:
Floatb_range[] = {0,255};
Floatg_range[] ={0,255};
Float*ranges[] = {b_range, g_range};
uniform
该值为0时,表示bin的范围是程序员自由设定的。当该值为非零时,表示bin的划分,是均等划分。
4:创建一个直方图后,避免里面存在一些随机值,我们可以将其清除cvClearHist
代码: cvClearHist(hist);
5:计算图像的直方图 cvCalcHist
代码:cvCalcHist(&imgBlue, hist, 0, 0);
6:将得到的直方图画出来: 其中用到了函数 cvGetMinMaxHistVaule, cvQueryHistValue_1D, cvFillConvexPoly.
<span style="font-size:18px;">IplImage *DrawHistogram(CvHistogram*hist, float scaleX = 1, float scaleY = 1){ // 画直方图 float histMax = 0; cvGetMinMaxHistValue(hist, 0 , &histMax, 0, 0); // 取得直方图中的最值 IplImage *imgHist = cvCreateImage(cvSize(256 * scaleX, 64*scaleY), 8, 1); cvZero(imgHist); //// 清空随机值 for(int i = 0; i < 255; i++) { float histValue = cvQueryHistValue_1D(hist, i); // 取得直方图中的i值 float nextValue = cvQueryHistValue_1D(hist, i+1); int numPt = 5; CvPoint pt[5]; pt[0] = cvPoint(i*scaleX, 64*scaleY); pt[1] = cvPoint((i+1)*scaleX, 64*scaleY); pt[2] = cvPoint((i+1)*scaleX, (1 -(nextValue/histMax))* 64 * scaleY); pt[3] = cvPoint((i+1)*scaleX, (1 -(histValue/histMax))* 64 * scaleY); pt[4] = cvPoint(i*scaleX, 64*scaleY); cvFillConvexPoly(imgHist, pt, numPt, cvScalarAll(255)); } return imgHist; }</span>
总结:以上给出得到直方图的主要步骤:直方图的创建—>计算图像的直方图—>画出直方图。以下给出完整的代码及运行的结果<span style="font-size:18px;">#include <iostream> #include "cv.h" #include "highgui.h" #include "cxcore.h" using namespace std; IplImage *DrawHistogram(CvHistogram*hist, float scaleX = 1, float scaleY = 1){ // 画直方图 float histMax = 0; cvGetMinMaxHistValue(hist, 0 , &histMax, 0, 0); // 取得直方图中的最值 IplImage *imgHist = cvCreateImage(cvSize(256 * scaleX, 64*scaleY), 8, 1); cvZero(imgHist); //// 清空随机值 for(int i = 0; i < 255; i++) { float histValue = cvQueryHistValue_1D(hist, i); // 取得直方图中的i值 float nextValue = cvQueryHistValue_1D(hist, i+1); int numPt = 5; CvPoint pt[5]; pt[0] = cvPoint(i*scaleX, 64*scaleY); pt[1] = cvPoint((i+1)*scaleX, 64*scaleY); pt[2] = cvPoint((i+1)*scaleX, (1 -(nextValue/histMax))* 64 * scaleY); pt[3] = cvPoint((i+1)*scaleX, (1 -(histValue/histMax))* 64 * scaleY); pt[4] = cvPoint(i*scaleX, 64*scaleY); cvFillConvexPoly(imgHist, pt, numPt, cvScalarAll(255)); } return imgHist; } int main() { IplImage *img = cvLoadImage("F:\\tongtong.jpg",1); if(!img){ cout << "No data img" << endl; } int dims = 1; int sizes = 256; float range[] = {0,255}; float*ranges[]={range}; CvHistogram *hist = cvCreateHist(dims, &sizes, CV_HIST_ARRAY, ranges, 1); cvClearHist(hist); //清除直方图里面的随机值 IplImage *imgBlue = cvCreateImage(cvGetSize(img), 8, 1); IplImage *imgGreen = cvCreateImage(cvGetSize(img), 8, 1); IplImage *imgRed = cvCreateImage(cvGetSize(img), 8, 1); cvSplit(img, imgBlue, imgGreen, imgRed, NULL); //将多通道图像分解 cvCalcHist(&imgBlue, hist, 0, 0); // 计算图像的直方图 IplImage *histBlue = DrawHistogram(hist); // 将直方图中的数据画出来 cvClearHist(hist); cvCalcHist(&imgGreen, hist, 0, 0); IplImage *histGreen = DrawHistogram(hist); cvClearHist(hist); cvCalcHist(&imgRed, hist, 0, 0); IplImage *histRed = DrawHistogram(hist); cvClearHist(hist); cvNamedWindow("show",0); cvNamedWindow("B", 0); cvNamedWindow("G", 0); cvNamedWindow("R", 0); cvShowImage("show",img); cvShowImage("B",histBlue); cvShowImage("G",histGreen); cvShowImage("R", histRed); cvWaitKey(0); cvReleaseImage(&img); cvDestroyWindow("show"); cvReleaseImage(&histBlue); cvDestroyWindow("B"); cvReleaseImage(&histGreen); cvDestroyWindow("G"); cvReleaseImage(&histRed); cvDestroyWindow("R"); return 0; }</span>
运行结果:

347

被折叠的 条评论
为什么被折叠?



