Caffe框架源码剖析(9)—损失层SoftmaxWithLossLayer

本文详细解析了Softmax层及其与SoftmaxWithLoss层的工作原理,包括正向传播和反向传播的过程,以及交叉熵损失的计算方法。特别强调了在训练过程中如何判断网络是否收敛,并给出了具体示例。

类SoftmaxWithLossLayer包含类SoftmaxLayer的实例。其中SoftmaxLayer层在正向传导函数中将64*10的bottom_data,通过计算得到64*10的top_data。这可以理解为输入数据为64个样本,每个样本特征数量为10,计算这64个样本分别在10个类别上的概率。公式如下,其中n=10,

f(zk)=ezknezi=ezkmnezim,m=max(zi)

SoftmaxWithLossLayer层利用SoftmaxLayer层的输出计算损失,公式如下,其中N为一个batch的大小(MNIST训练时batch_size为64,测试时batch_size为100)。 根据Cross-Entropy的定义有,

loss=iny^
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值