动态规划(DP)

首先,我们看一下这道题(此题目来源于北大POJ):

    数字三角形(POJ1163)

    

    在上面的数字三角形中寻找一条从顶部到底边的路径,使得路径上所经过的数字之和最大。路径上的每一步都只能往左下或 右下走。只需要求出这个最大和即可,不必给出具体路径。 三角形的行数大于1小于等于100,数字为 0 - 99

    输入格式:

    5      //表示三角形的行数    接下来输入三角形

    7

    3   8

    8   1   0

    2   7   4   4

    4   5   2   6   5

    要求输出最大和

    接下来,我们来分析一下解题思路:

    首先,肯定得用二维数组来存放数字三角形

    然后我们用D( r, j) 来表示第r行第 j 个数字(r,j从1开始算)

    我们用MaxSum(r, j)表示从D(r,j)到底边的各条路径中,最佳路径的数字之和。

    因此,此题的最终问题就变成了求 MaxSum(1,1)

    当我们看到这个题目的时候,首先想到的就是可以用简单的递归来解题:

    D(r, j)出发,下一步只能走D(r+1,j)或者D(r+1, j+1)。故对于N行的三角形,我们可以写出如下的递归式:  

if ( r == N)                
	MaxSum(r,j) = D(r,j)  
else      
	MaxSum( r, j) = Max{ MaxSum(r+1,j), MaxSum(r+1,j+1) } + D(r,j) 


根据上面这个简单的递归式,我们就可以很轻松地写出完整的递归代码: 

public class Solution {
    static int [][]D=new int[101][101];
    static int n=0;

    static int MaxSum(int i,int j)//递归 想加得到最大值
    {
        if(i==n)return D[i][j];
        int a=MaxSum(i+1,j);
        int b=MaxSum(i+1,j+1);
        return Math.max(a, b)+D[i][j];
    }

    public static void main(String args[])
    {
        Scanner cn=new Scanner(System.in);
        n=cn.nextInt();
        for(int i=1;i<=n;i++)
            for(int j=1;j<=i;j++)
                D[i][j]=cn.nextInt();//输入三角形
        System.out.println(MaxSum(1,1));
    }
}


 对于如上这段递归的代码,当我提交到POJ时,会显示超时。

     为什么会超时呢?

    答案很简单,因为我们重复计算了,当我们在进行递归时,计算机帮我们计算的过程如下图:

    

    就拿第三行数字1来说,当我们计算从第2行的数字3开始的MaxSum时会计算出从1开始的MaxSum,当我们计算从第二行的数字8开始的MaxSum的时候又会计算一次从1开始的MaxSum,也就是说有重复计算。这样就浪费了大量的时间。也就是说如果采用递规的方法,深度遍历每条路径,存在大量重复计算。则时间复杂度为 2的n次方,对于 n = 100 行,肯定超时。 

    接下来,我们就要考虑如何进行改进,我们自然而然就可以想到如果每算出一个MaxSum(r,j)就保存起来,下次用到其值的时候直接取用,则可免去重复计算。那么可以用n方的时间复杂度完成计算。因为三角形的数字总数是 n(n+1)/2

    根据这个思路,我们就可以将上面的代码进行改进,使之成为记忆递归型的动态规划程序: 

public class Solution {
    static int [][]D=new int[101][101];
    static int n=0;
    static int [][]maxSum = new int[101][101];

    static int MaxSum(int i,int j)//递归 想加得到最大值
    {
        if( maxSum[i][j] != -1 )
            return maxSum[i][j];
        if(i==n)
            maxSum[i][j] = D[i][j];
        else{
            int x = MaxSum(i+1,j);
            int y = MaxSum(i+1,j+1);
            maxSum[i][j] = Math.max(x,y)+ D[i][j];
        }
        return maxSum[i][j];
    }

    public static void main(String[] args) {
        Scanner cn=new Scanner(System.in);
        n=cn.nextInt();
        for(int i=1;i<=n;i++)
            for(int j=1;j<=i;j++){
                D[i][j]=cn.nextInt();//输入三角形
                maxSum[i][j] = -1;
            }
        System.out.println(MaxSum(1,1));
    }
}


当我们提交如上代码时,结果就是一次AC


    虽然在短时间内就AC了。但是,我们并不能满足于这样的代码,因为递归总是需要使用大量堆栈上的空间,很容易造成栈溢出,我们现在就要考虑如何把递归转换为递推,让我们一步一步来完成这个过程。

    我们首先需要计算的是最后一行,因此可以把最后一行直接写出,如下图:

    

    现在开始分析倒数第二行的每一个数,现分析数字2,2可以和最后一行4相加,也可以和最后一行的5相加,但是很显然和5相加要更大一点,结果为7,我们此时就可以将7保存起来,然后分析数字7,7可以和最后一行的5相加,也可以和最后一行的2相加,很显然和5相加更大,结果为12,因此我们将12保存起来。以此类推。。我们可以得到下面这张图:

    

    然后按同样的道理分析倒数第三行和倒数第四行,最后分析第一行,我们可以依次得到如下结果:

    

    

    上面的推导过程相信大家不难理解,理解之后我们就可以写出如下的递推型动态规划程序: 

public class Solution {
    static int [][]D=new int[101][101];
    static int n=0;
    static int [][]maxSum = new int[101][101];

    public static void main(String[] args) {
        Scanner cn=new Scanner(System.in);
        n=cn.nextInt();
        for(int i=1;i<=n;i++)
            for(int j=1;j<=i;j++){
                D[i][j]=cn.nextInt();//输入三角形
            }
        for( int i = 1;i <= n; i++ )
            maxSum[n][i] = D[n][i];
        for (int i = n-1; i >0 ; i--) {
            for (int j = 1; j <= i; j++) {
                maxSum[i][j] = Math.max(maxSum[i+1][j],maxSum[i+1][j+1]) + D[i][j];
            }
        }
        System.out.println(maxSum[1][1]);
    }
}



我们的代码仅仅是这样就够了吗?当然不是,我们仍然可以继续优化,而这个优化当然是对于空间进行优化,其实完全没必要用二维maxSum数组存储每一个MaxSum(r,j),只要从底层一行行向上递推,那么只要一维数组maxSum[100]即可,即只要存储一行的MaxSum值就可以。

     对于空间优化后的具体递推过程如下:

    

    

    

    

    

    

    接下里的步骤就按上图的过程一步一步推导就可以了。进一步考虑,我们甚至可以连maxSum数组都可以不要,直接用D的第n行直接替代maxSum即可。但是这里需要强调的是:虽然节省空间,但是时间复杂度还是不变的。

    依照上面的方式,我们可以写出如下代码:    

public class Solution {
    static int [][]D=new int[101][101];
    static int n=0;
    static int []maxSum = new int[101];

    public static void main(String[] args) {
        Scanner cn=new Scanner(System.in);
        n=cn.nextInt();
        for(int i=1;i<=n;i++)
            for(int j=1;j<=i;j++){
                D[i][j]=cn.nextInt();//输入三角形
            }
        for( int i = 1;i <= n; ++ i )
            maxSum[i] = D[n][i];
        for (int i = n-1; i >0 ; i--) {
            for (int j = 1; j <= i; j++) {
                maxSum[j] = Math.max(maxSum[j],maxSum[j+1]) + D[i][j];
            }
        }
        System.out.println(maxSum[1]);
    }

}

    接下来,我们就进行一下总结:

    递归到动规的一般转化方法

    递归函数有n个参数,就定义一个n维的数组,数组的下标是递归函数参数的取值范围,数组元素的值是递归函数的返回值,这样就可以从边界值开始,逐步填充数组,相当于计算递归函数值的逆过程。

    动规解题的一般思路

    1. 将原问题分解为子问题

  •     把原问题分解为若干个子问题,子问题和原问题形式相同或类似,只不过规模变小了。子问题都解决,原问题即解决(数字三角形例)。
  •     子问题的解一旦求出就会被保存,所以每个子问题只需求 解一次。

    2.确定状态

  •     在用动态规划解题时,我们往往将和子问题相关的各个变量的一组取值,称之为一个“状 态”。一个“状态”对应于一个或多个子问题, 所谓某个“状态”下的“值”,就是这个“状 态”所对应的子问题的解。
  •     所有“状态”的集合,构成问题的“状态空间”。“状态空间”的大小,与用动态规划解决问题的时间复杂度直接相关。 在数字三角形的例子里,一共有N×(N+1)/2个数字,所以这个问题的状态空间里一共就有N×(N+1)/2个状态。

    整个问题的时间复杂度是状态数目乘以计算每个状态所需时间。在数字三角形里每个“状态”只需要经过一次,且在每个状态上作计算所花的时间都是和N无关的常数。

    3.确定一些初始状态(边界状态)的值

    以“数字三角形”为例,初始状态就是底边数字,值就是底边数字值。

    4. 确定状态转移方程

     定义出什么是“状态”,以及在该“状态”下的“值”后,就要找出不同的状态之间如何迁移――即如何从一个或多个“值”已知的 “状态”,求出另一个“状态”的“值”(递推型)。状态的迁移可以用递推公式表示,此递推公式也可被称作“状态转移方程”。

    数字三角形的状态转移方程:

    
  

    能用动规解决的问题的特点

    1) 问题具有最优子结构性质。如果问题的最优解所包含的子问题的解也是最优的,我们就称该问题具有最优子结 构性质。

    2) 无后效性。当前的若干个状态值一旦确定,则此后过程的演变就只和这若干个状态的值有关,和之前是采取哪种手段或经过哪条路径演变到当前的这若干个状态,没有关系。

<think>嗯,用户想了解动态规划算法的原理、实现和应用。首先,我需要回忆动态规划的基本概念。根据引用[2],动态规划适用于有重叠子问题和最优子结构的问题。那什么是重叠子问题呢?比如斐波那契数列,计算fib(5)需要多次计算fib(3),这时候重复计算就可以通过存储中间结果来优化。最优子结构应该是说大问题的最优解包含子问题的最优解,比如最短路径问题。 接下来是原理部分,用户可能想知道动态规划的核心思想。引用[3]提到动态规划通过分解问题,保存中间结果避免重复计算。需要解释状态和状态转移方程,这部分在引用[1]里也有提到,状态转移方程是关键,比如LCS问题中的不同情况处理。 实现方法的话,通常分为自顶向下和自底向上。自顶向下是递归加记忆化,而自底向上是迭代填表。比如斐波那契数列,递归会有很多重复,用数组存储已计算的值可以优化。引用[4]中的例子可能涉及状态转移方程的具体应用,比如最小花费问题。 应用场景方面,动态规划常见于背包问题、最长公共子序列、最短路径等。引用[3]提到Dijkstra算法也是动态规划的一种,这可能是个有趣的例子,但通常Dijkstra被归类为贪心算法,可能需要进一步确认。另外,股票买卖问题也是经典DP应用。 用户可能还希望了解动态规划的优缺点,比如时间复杂度的优化和空间复杂度可能较高的问题。比如,斐波那契数列用DP可以将指数时间降到线性,但需要O(n)空间,不过可以进一步优化到O(1)。 需要确保回答结构清晰,分点解释原理、步骤、实现方法和应用场景。同时,生成的相关问题要覆盖用户可能进一步询问的方向,比如步骤中的关键点或优化技巧。还要注意引用正确的文献,比如引用[2]关于重叠子问题和最优子结构的定义,引用[3]中的状态转移方程例子。 最后,检查是否符合用户的要求:使用中文,LaTeX格式正确,生成相关问题,引用标识正确。例如,数学公式用$...$或$$...$$,代码块用正确的语法,确保没有用户不可见的指令出现在回答中。</think>### 动态规划DP算法详解 #### 一、基本原理 动态规划算法的核心思想是**将复杂问题分解为重叠子问题,并通过保存中间计算结果避免重复计算**,从而提高效率[^2]。其适用条件包括: 1. **最优子结构**:大问题的最优解可由子问题的最优解推导得到 *例如:最短路径问题中,若$A \rightarrow B \rightarrow C$是$A \rightarrow C$的最短路径,则$A \rightarrow B$和$B \rightarrow C$也必须是各自段的最短路径* 2. **重叠子问题**:不同子问题之间存在重复计算 *例如:计算斐波那契数列$F(n)=F(n-1)+F(n-2)$时,$F(3)$会被多次计算* #### 二、实现步骤 1. **定义状态** 用变量或数组表示问题的中间状态,例如: - 斐波那契数列:$dp[i]$表示第$i$项的值 - 背包问题:$dp[i][j]$表示前$i$个物品在容量$j$时的最大价值 2. **建立状态转移方程** 根据子问题之间的关系推导递推公式,例如: - 最长公共子序列(LCS): $$ dp[i][j] = \begin{cases} dp[i-1][j-1]+1 & \text{当 } S1[i]=S2[j] \\ \max(dp[i-1][j], dp[i][j-1]) & \text{当 } S1[i] \neq S2[j] \end{cases} $$ [^3] 3. **确定初始条件和边界值** 例如斐波那契数列中$dp[0]=0, dp[1]=1$ 4. **选择计算顺序** - 自顶向下(记忆化搜索):递归+备忘录 - 自底向上:迭代填表 #### 三、代码实现示例(斐波那契数列) ```python # 自底向上实现 def fib(n): dp = [0] * (n+1) dp[1] = 1 for i in range(2, n+1): dp[i] = dp[i-1] + dp[i-2] # 状态转移方程 return dp[n] # 空间优化版(O(1)空间) def fib_optimized(n): a, b = 0, 1 for _ in range(n): a, b = b, a + b return a ``` #### 四、典型应用场景 1. **序列问题** - 最长递增子序列(LIS) - 编辑距离计算 2. **背包问题** - 0-1背包:$dp[i][j] = \max(dp[i-1][j], dp[i-1][j-w_i] + v_i)$ - 完全背包 3. **路径规划** - 网格最小路径和(状态转移方程:$dp[i][j] = \min(dp[i-1][j], dp[i][j-1]) + grid[i][j]$)[^4] 4. **动态决策问题** - 股票买卖最佳时机 - 打家劫舍问题 #### 五、算法分析 | 特征 | 说明 | |-----------|-----------------------------| | 时间复杂度 | $O(子问题数量 \times 每个子问题计算时间)$ | | 空间复杂度 | 可通过滚动数组优化 | | 优势 | 避免重复计算,效率显著提升 | | 局限性 | 要求问题具有最优子结构 |
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值