caffe源码阅读-插曲-math_function.cpp

本文详细解析了Caffe源码中的关键数学函数,包括矩阵运算、向量运算、数值计算等,如caffe_cpu_gemm、caffe_cpu_gemv、caffe_axpy等函数的功能及使用方法。

来源:Caffe源码(一):math_functions 分析

主要函数

math_function 定义了caffe 中用到的一些矩阵操作和数值计算的一些函数,这里以float类型为例做简单的分析

1. caffe_cpu_gemm 函数:

template<>
void caffe_cpu_gemm<float>(const CBLAS_TRANSPOSE TransA,
    const CBLAS_TRANSPOSE TransB, const int M, const int N, const int K,
    const float alpha, const float* A, const float* B, const float beta,
    float* C) {
  int lda = (TransA == CblasNoTrans) ? K : M;
  int ldb = (TransB == CblasNoTrans) ? N : K;
  cblas_sgemm(CblasRowMajor, TransA, TransB, M, N, K, alpha, A, lda, B,
      ldb, beta, C, N);
}

template<>
void caffe_cpu_gemm<double>(const CBLAS_TRANSPOSE TransA,
    const CBLAS_TRANSPOSE TransB, const int M, const int N, const int K,
    const double alpha, const double* A, const double* B, const double beta,
    double* C) {
  int lda = (TransA == CblasNoTrans) ? K : M;
  int ldb = (TransB == CblasNoTrans) ? N : K;
  cblas_dgemm(CblasRowMajor, TransA, TransB, M, N, K, alpha, A, lda, B,
      ldb, beta, C, N);
}

功能: C=alpha*A*B+beta*C
A,B,C 是输入矩阵(一维数组格式)
CblasRowMajor :数据是行主序的(二维数据也是用一维数组储存的)
TransA, TransB:是否要对A和B做转置操作(CblasTrans CblasNoTrans)
M: A、C 的行数
N: B、C 的列数
K: A 的列数, B 的行数
lda : A的列数(不做转置)行数(做转置)
ldb: B的列数(不做转置)行数(做转置)

2. caffe_cpu_gemv 函数:

template <>
void caffe_cpu_gemv<float>(const CBLAS_TRANSPOSE TransA, const int M,
    const int N, const float alpha, const float* A, const float* x,
    const float beta, float* y) {
  cblas_sgemv(CblasRowMajor, TransA, M, N, alpha, A, N, x, 1, beta, y, 1);
}

template <>
void caffe_cpu_gemv<double>(const CBLAS_TRANSPOSE TransA, const int M,
    const int N, const double alpha, const double* A, const double* x,
    const double beta, double* y) {
  cblas_dgemv(CblasRowMajor, TransA, M, N, alpha, A, N, x, 1, beta, y, 1);
}

功能: y=alpha*A*x+beta*y
其中X和Y是向量,A 是矩阵
M:A 的行数
N:A 的列数
cblas_sgemv 中的 参数1 表示对X和Y的每个元素都进行操作

3.caffe_axpy 函数:

template <>
void caffe_axpy<float>(const int N, const float alpha, const float* X,
    float* Y) { cblas_saxpy(N, alpha, X, 1, Y, 1); }

template <>
void caffe_axpy<double>(const int N, const double alpha, const double* X,
    double* Y) { cblas_daxpy(N, alpha, X, 1, Y, 1); }

功能: Y=alpha*X+Y

N:为X和Y中element的个数

4.caffe_set 函数:

template <typename Dtype>
void caffe_set(const int N, const Dtype alpha, Dtype* Y) {
  if (alpha == 0) {
    memset(Y, 0, sizeof(Dtype) * N);  // NOLINT(caffe/alt_fn)
    return;
  }
  for (int i = 0; i < N; ++i) {
    Y[i] = alpha;
  }
}

template void caffe_set<int>(const int N, const int alpha, int* Y);
template void caffe_set<float>(const int N, const float alpha, float* Y);
template void caffe_set<double>(const int N, const double alpha, double* Y);

功能:用常数 alpha 对 Y 进行初始化
函数 void *memset(void *buffer, char c, unsigned count) 一般为新申请的内存做初始化,功能是将buffer所指向内存中的每个字节的内容全部设置为c指定的ASCII值, count为块的大小

5.caffe_add_scalar 函数:

template <>
void caffe_add_scalar(const int N, const float alpha, float* Y) {
  for (int i = 0; i < N; ++i) {
    Y[i] += alpha;
  }
}

template <>
void caffe_add_scalar(const int N, const double alpha, double* Y) {
  for (int i = 0; i < N; ++i) {
    Y[i] += alpha;
  }
}

功能: 给 Y 的每个 element 加上常数 alpha

6.caffe_copy 函数:

template <typename Dtype>
void caffe_copy(const int N, const Dtype* X, Dtype* Y) {
  if (X != Y) {
    if (Caffe::mode() == Caffe::GPU) {
#ifndef CPU_ONLY
      // NOLINT_NEXT_LINE(caffe/alt_fn)
      CUDA_CHECK(cudaMemcpy(Y, X, sizeof(Dtype) * N, cudaMemcpyDefault));
#else
      NO_GPU;
#endif
    } else {
      memcpy(Y, X, sizeof(Dtype) * N);  // NOLINT(caffe/alt_fn)
    }
  }
}

template void caffe_copy<int>(const int N, const int* X, int* Y);
template void caffe_copy<unsigned int>(const int N, const unsigned int* X,
    unsigned int* Y);
template void caffe_copy<float>(const int N, const float* X, float* Y);
template void caffe_copy<double>(const int N, const double* X, double* Y);

函数 void *memcpy(void *dest, void *src, unsigned int count) 把src所指向的内存区域 copy到dest所指向的内存区域, count为块的大小

7.caffe_scal 函数:

template <>
void caffe_scal<float>(const int N, const float alpha, float *X) {
  cblas_sscal(N, alpha, X, 1);
}

template <>
void caffe_scal<double>(const int N, const double alpha, double *X) {
  cblas_dscal(N, alpha, X, 1);
}

功能:X = alpha*X
N: X中element的个数

8.caffeine_cup_axpby 函数:

template <>
void caffe_cpu_axpby<float>(const int N, const float alpha, const float* X,
                            const float beta, float* Y) {
  cblas_saxpby(N, alpha, X, 1, beta, Y, 1);
}

template <>
void caffe_cpu_axpby<double>(const int N, const double alpha, const double* X,
                             const double beta, double* Y) {
  cblas_daxpby(N, alpha, X, 1, beta, Y, 1);
}

功能:Y= alpha*X+beta*Y

9.caffe_add、 caffe_sub、 caffe_mul、 caffe_div 函数:

template <>
void caffe_add<float>(const int n, const float* a, const float* b,
    float* y) {
  vsAdd(n, a, b, y);
}

template <>
void caffe_add<double>(const int n, const double* a, const double* b,
    double* y) {
  vdAdd(n, a, b, y);
}

template <>
void caffe_sub<float>(const int n, const float* a, const float* b,
    float* y) {
  vsSub(n, a, b, y);
}

template <>
void caffe_sub<double>(const int n, const double* a, const double* b,
    double* y) {
  vdSub(n, a, b, y);
}

template <>
void caffe_mul<float>(const int n, const float* a, const float* b,
    float* y) {
  vsMul(n, a, b, y);
}

template <>
void caffe_mul<double>(const int n, const double* a, const double* b,
    double* y) {
  vdMul(n, a, b, y);
}

template <>
void caffe_div<float>(const int n, const float* a, const float* b,
    float* y) {
  vsDiv(n, a, b, y);
}

template <>
void caffe_div<double>(const int n, const double* a, const double* b,
    double* y) {
  vdDiv(n, a, b, y);
}

功能:这四个函数分别实现element-wise的加减乘除(y[i] = a[i] + - * \ b[i])

10.caffe_powx、 caffe_sqr、 caffe_exp、 caffe_abs 函数:

template <>
void caffe_powx<float>(const int n, const float* a, const float b,
    float* y) {
  vsPowx(n, a, b, y);
}

template <>
void caffe_powx<double>(const int n, const double* a, const double b,
    double* y) {
  vdPowx(n, a, b, y);
}

template <>
void caffe_sqr<float>(const int n, const float* a, float* y) {
  vsSqr(n, a, y);
}

template <>
void caffe_sqr<double>(const int n, const double* a, double* y) {
  vdSqr(n, a, y);
}

template <>
void caffe_exp<float>(const int n, const float* a, float* y) {
  vsExp(n, a, y);
}

template <>
void caffe_exp<double>(const int n, const double* a, double* y) {
  vdExp(n, a, y);
}

template <>
void caffe_abs<float>(const int n, const float* a, float* y) {
    vsAbs(n, a, y);
}

template <>
void caffe_abs<double>(const int n, const double* a, double* y) {
    vdAbs(n, a, y);
}

功能 : 同样是element-wise操作,分别是y[i] = a[i] ^ b, y[i] = a[i]^2,y[i] = exp(a[i] ),y[i] = |a[i] |

11.int caffe_rng_rand 函数:

unsigned int caffe_rng_rand() {
  return (*caffe_rng())();
}

功能:返回一个随机数

12.caffe_nextafer 函数:

template <typename Dtype>
Dtype caffe_nextafter(const Dtype b) {
  return boost::math::nextafter<Dtype>(
      b, std::numeric_limits<Dtype>::max());
}

template
float caffe_nextafter(const float b);

template
double caffe_nextafter(const double b);

功能 : 返回 b 最大方向上可以表示的最接近的数值。

13.caffe_cpu_strided_dot、 caffe_cpu_dot 函数:

template <>
float caffe_cpu_strided_dot<float>(const int n, const float* x, const int incx,
    const float* y, const int incy) {
  return cblas_sdot(n, x, incx, y, incy);
}

template <>
double caffe_cpu_strided_dot<double>(const int n, const double* x,
    const int incx, const double* y, const int incy) {
  return cblas_ddot(n, x, incx, y, incy);
}

功能: 返回 vector X 和 vector Y 的内积。

incx, incy : 步长,即每隔incx 或 incy 个element 进行操作。

template <typename Dtype>
Dtype caffe_cpu_dot(const int n, const Dtype* x, const Dtype* y) {
  return caffe_cpu_strided_dot(n, x, 1, y, 1);
}

template
float caffe_cpu_dot<float>(const int n, const float* x, const float* y);

template
double caffe_cpu_dot<double>(const int n, const double* x, const double* y);


14.caffe_cpu_hamming_distance 函数:

template <>
int caffe_cpu_hamming_distance<float>(const int n, const float* x,
                                  const float* y) {
  int dist = 0;
  for (int i = 0; i < n; ++i) {
    dist += __builtin_popcount(static_cast<uint32_t>(x[i]) ^
                               static_cast<uint32_t>(y[i]));
  }
  return dist;
}

template <>
int caffe_cpu_hamming_distance<double>(const int n, const double* x,
                                   const double* y) {
  int dist = 0;
  for (int i = 0; i < n; ++i) {
    dist += __builtin_popcountl(static_cast<uint64_t>(x[i]) ^
                                static_cast<uint64_t>(y[i]));
  }
  return dist;
}

功能:返回 x 和 y 之间的海明距离。(两个等长字符串之间的海明距离是两个字符串对应位置的不同字符的个数。)

15. caffe_cpu_asum 函数:

template <>
float caffe_cpu_asum<float>(const int n, const float* x) {
  return cblas_sasum(n, x, 1);
}

template <>
double caffe_cpu_asum<double>(const int n, const double* x) {
  return cblas_dasum(n, x, 1);
}

功能:计算 vector x 的所有element的绝对值之和。

16.caffe_cpu_scale 函数:

template <>
void caffe_cpu_scale<float>(const int n, const float alpha, const float *x,
                            float* y) {
  cblas_scopy(n, x, 1, y, 1);
  cblas_sscal(n, alpha, y, 1);
}

template <>
void caffe_cpu_scale<double>(const int n, const double alpha, const double *x,
                             double* y) {
  cblas_dcopy(n, x, 1, y, 1);
  cblas_dscal(n, alpha, y, 1);
}

功能:y = alpha*x

(pytorch_env) PS E:\PyTorch_Build\pytorch> # 查找实际安装位置 (pytorch_env) PS E:\PyTorch_Build\pytorch> $condaPath = Get-ChildItem -Path C:\ -Recurse -Filter conda.bat -ErrorAction SilentlyContinue | >> Select-Object -First 1 | >> ForEach-Object { $_.DirectoryName } (pytorch_env) PS E:\PyTorch_Build\pytorch> (pytorch_env) PS E:\PyTorch_Build\pytorch> if ($condaPath) { >> $env:PATH = "$condaPath;$env:PATH" >> [Environment]::SetEnvironmentVariable("PATH", $env:PATH, "Machine") >> Write-Host "Conda found at: $condaPath" -ForegroundColor Green >> } else { >> # 如果找不到,使用新安装的Miniconda >> $env:PATH = "C:\Miniconda3\Scripts;$env:PATH" >> } Conda found at: C:\Miniconda3\condabin (pytorch_env) PS E:\PyTorch_Build\pytorch> (pytorch_env) PS E:\PyTorch_Build\pytorch> # 验证 (pytorch_env) PS E:\PyTorch_Build\pytorch> conda --version conda 25.7.0 (pytorch_env) PS E:\PyTorch_Build\pytorch> # 使用conda安装必要组件 (pytorch_env) PS E:\PyTorch_Build\pytorch> conda install -c conda-forge -y ` >> libuv=1.46 ` >> openssl=3.1 ` >> numpy ` >> mkl=2024.1 ` >> mkl-include=2024.1 CondaToSNonInteractiveError: Terms of Service have not been accepted for the following channels. Please accept or remove them before proceeding: - https://repo.anaconda.com/pkgs/main - https://repo.anaconda.com/pkgs/r - https://repo.anaconda.com/pkgs/msys2 To accept these channels' Terms of Service, run the following commands: conda tos accept --override-channels --channel https://repo.anaconda.com/pkgs/main conda tos accept --override-channels --channel https://repo.anaconda.com/pkgs/r conda tos accept --override-channels --channel https://repo.anaconda.com/pkgs/msys2 For information on safely removing channels from your conda configuration, please see the official documentation: https://www.anaconda.com/docs/tools/working-with-conda/channels (pytorch_env) PS E:\PyTorch_Build\pytorch> (pytorch_env) PS E:\PyTorch_Build\pytorch> # 验证MKL安装 (pytorch_env) PS E:\PyTorch_Build\pytorch> python -c "import mkl; print(f'MKL version: {mkl.__version__}')" Traceback (most recent call last): File "<string>", line 1, in <module> ModuleNotFoundError: No module named 'mkl' (pytorch_env) PS E:\PyTorch_Build\pytorch> # 使用conda安装必要组件 (pytorch_env) PS E:\PyTorch_Build\pytorch> conda install -c conda-forge -y ` >> libuv=1.46 ` >> openssl=3.1 ` >> numpy ` >> mkl=2024.1 ` >> mkl-include=2024.1 CondaToSNonInteractiveError: Terms of Service have not been accepted for the following channels. Please accept or remove them before proceeding: - https://repo.anaconda.com/pkgs/main - https://repo.anaconda.com/pkgs/r - https://repo.anaconda.com/pkgs/msys2 To accept these channels' Terms of Service, run the following commands: conda tos accept --override-channels --channel https://repo.anaconda.com/pkgs/main conda tos accept --override-channels --channel https://repo.anaconda.com/pkgs/r conda tos accept --override-channels --channel https://repo.anaconda.com/pkgs/msys2 For information on safely removing channels from your conda configuration, please see the official documentation: https://www.anaconda.com/docs/tools/working-with-conda/channels (pytorch_env) PS E:\PyTorch_Build\pytorch> (pytorch_env) PS E:\PyTorch_Build\pytorch> # 验证MKL安装 (pytorch_env) PS E:\PyTorch_Build\pytorch> python -c "import mkl; print(f'MKL version: {mkl.__version__}')" Traceback (most recent call last): File "<string>", line 1, in <module> ModuleNotFoundError: No module named 'mkl' (pytorch_env) PS E:\PyTorch_Build\pytorch> # 清理构建缓存 (pytorch_env) PS E:\PyTorch_Build\pytorch> Remove-Item -Recurse -Force build, dist Remove-Item: Cannot find path 'E:\PyTorch_Build\pytorch\dist' because it does not exist. (pytorch_env) PS E:\PyTorch_Build\pytorch> (pytorch_env) PS E:\PyTorch_Build\pytorch> # 设置构建参数 (pytorch_env) PS E:\PyTorch_Build\pytorch> $env:USE_CUDNN = "1" (pytorch_env) PS E:\PyTorch_Build\pytorch> $env:MAX_JOBS = [Environment]::ProcessorCount (pytorch_env) PS E:\PyTorch_Build\pytorch> (pytorch_env) PS E:\PyTorch_Build\pytorch> # 开始构建(添加详细日志) (pytorch_env) PS E:\PyTorch_Build\pytorch> python setup.py install --cmake 2>&1 | Tee-Object -FilePath build_log.txt Building wheel torch-2.9.0a0+git2d31c3d -- Building version 2.9.0a0+git2d31c3d E:\PyTorch_Build\pytorch\pytorch_env\lib\site-packages\setuptools\_distutils\_msvccompiler.py:12: UserWarning: _get_vc_env is private; find an alternative (pypa/distutils#340) warnings.warn( cmake -GNinja -DBUILD_PYTHON=True -DBUILD_TEST=True -DCMAKE_BUILD_TYPE=Release -DCMAKE_INSTALL_PREFIX=E:\PyTorch_Build\pytorch\torch -DCMAKE_PREFIX_PATH=E:\PyTorch_Build\pytorch\pytorch_env\Lib\site-packages -DCUDNN_INCLUDE_DIR=E:\Program Files\NVIDIA\CUNND\v9.12\include -DCUDNN_LIBRARY=E:\Program Files\NVIDIA\CUNND\v9.12\lib\x64\cudnn.lib -DPython_EXECUTABLE=E:\PyTorch_Build\pytorch\pytorch_env\Scripts\python.exe -DTORCH_BUILD_VERSION=2.9.0a0+git2d31c3d -DUSE_CUDNN=1 -DUSE_NUMPY=True E:\PyTorch_Build\pytorch CMake Deprecation Warning at CMakeLists.txt:18 (cmake_policy): The OLD behavior for policy CMP0126 will be removed from a future version of CMake. The cmake-policies(7) manual explains that the OLD behaviors of all policies are deprecated and that a policy should be set to OLD only under specific short-term circumstances. Projects should be ported to the NEW behavior and not rely on setting a policy to OLD. -- The CXX compiler identification is MSVC 19.44.35215.0 -- The C compiler identification is MSVC 19.44.35215.0 -- Detecting CXX compiler ABI info -- Detecting CXX compiler ABI info - done -- Check for working CXX compiler: C:/Program Files (x86)/Microsoft Visual Studio/2022/BuildTools/VC/Tools/MSVC/14.44.35207/bin/Hostx64/x64/cl.exe - skipped -- Detecting CXX compile features -- Detecting CXX compile features - done -- Detecting C compiler ABI info -- Detecting C compiler ABI info - done -- Check for working C compiler: C:/Program Files (x86)/Microsoft Visual Studio/2022/BuildTools/VC/Tools/MSVC/14.44.35207/bin/Hostx64/x64/cl.exe - skipped -- Detecting C compile features -- Detecting C compile features - done -- Not forcing any particular BLAS to be found CMake Warning at CMakeLists.txt:425 (message): TensorPipe cannot be used on Windows. Set it to OFF CMake Warning at CMakeLists.txt:427 (message): KleidiAI cannot be used on Windows. Set it to OFF CMake Warning at CMakeLists.txt:439 (message): Libuv is not installed in current conda env. Set USE_DISTRIBUTED to OFF. Please run command 'conda install -c conda-forge libuv=1.39' to install libuv. -- Performing Test C_HAS_AVX_1 -- Performing Test C_HAS_AVX_1 - Success -- Performing Test C_HAS_AVX2_1 -- Performing Test C_HAS_AVX2_1 - Success -- Performing Test C_HAS_AVX512_1 -- Performing Test C_HAS_AVX512_1 - Success -- Performing Test CXX_HAS_AVX_1 -- Performing Test CXX_HAS_AVX_1 - Success -- Performing Test CXX_HAS_AVX2_1 -- Performing Test CXX_HAS_AVX2_1 - Success -- Performing Test CXX_HAS_AVX512_1 -- Performing Test CXX_HAS_AVX512_1 - Success -- Current compiler supports avx2 extension. Will build perfkernels. -- Performing Test COMPILER_SUPPORTS_HIDDEN_VISIBILITY -- Performing Test COMPILER_SUPPORTS_HIDDEN_VISIBILITY - Failed -- Performing Test COMPILER_SUPPORTS_HIDDEN_INLINE_VISIBILITY -- Performing Test COMPILER_SUPPORTS_HIDDEN_INLINE_VISIBILITY - Failed -- Could not find hardware support for NEON on this machine. -- No OMAP3 processor on this machine. -- No OMAP4 processor on this machine. -- Compiler does not support SVE extension. Will not build perfkernels. CMake Warning at CMakeLists.txt:845 (message): x64 operating system is required for FBGEMM. Not compiling with FBGEMM. Turn this warning off by USE_FBGEMM=OFF. -- Performing Test HAS/UTF_8 -- Performing Test HAS/UTF_8 - Success -- Found CUDA: E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0 (found version "13.0") -- The CUDA compiler identification is NVIDIA 13.0.48 with host compiler MSVC 19.44.35215.0 -- Detecting CUDA compiler ABI info -- Detecting CUDA compiler ABI info - done -- Check for working CUDA compiler: E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0/bin/nvcc.exe - skipped -- Detecting CUDA compile features -- Detecting CUDA compile features - done -- Found CUDAToolkit: E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0/include (found version "13.0.48") -- PyTorch: CUDA detected: 13.0 -- PyTorch: CUDA nvcc is: E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0/bin/nvcc.exe -- PyTorch: CUDA toolkit directory: E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0 -- PyTorch: Header version is: 13.0 -- Found Python: E:\PyTorch_Build\pytorch\pytorch_env\Scripts\python.exe (found version "3.10.10") found components: Interpreter CMake Warning at cmake/public/cuda.cmake:140 (message): Failed to compute shorthash for libnvrtc.so Call Stack (most recent call first): cmake/Dependencies.cmake:44 (include) CMakeLists.txt:873 (include) -- Could NOT find CUDNN (missing: CUDNN_LIBRARY_PATH CUDNN_INCLUDE_PATH) CMake Warning at cmake/public/cuda.cmake:201 (message): Cannot find cuDNN library. Turning the option off Call Stack (most recent call first): cmake/Dependencies.cmake:44 (include) CMakeLists.txt:873 (include) -- Could NOT find CUSPARSELT (missing: CUSPARSELT_LIBRARY_PATH CUSPARSELT_INCLUDE_PATH) CMake Warning at cmake/public/cuda.cmake:226 (message): Cannot find cuSPARSELt library. Turning the option off Call Stack (most recent call first): cmake/Dependencies.cmake:44 (include) CMakeLists.txt:873 (include) -- Could NOT find CUDSS (missing: CUDSS_LIBRARY_PATH CUDSS_INCLUDE_PATH) CMake Warning at cmake/public/cuda.cmake:242 (message): Cannot find CUDSS library. Turning the option off Call Stack (most recent call first): cmake/Dependencies.cmake:44 (include) CMakeLists.txt:873 (include) -- USE_CUFILE is set to 0. Compiling without cuFile support -- Autodetected CUDA architecture(s): 12.0 CMake Warning at cmake/public/cuda.cmake:317 (message): pytorch is not compatible with `CMAKE_CUDA_ARCHITECTURES` and will ignore its value. Please configure `TORCH_CUDA_ARCH_LIST` instead. Call Stack (most recent call first): cmake/Dependencies.cmake:44 (include) CMakeLists.txt:873 (include) -- Added CUDA NVCC flags for: -gencode;arch=compute_120,code=sm_120 CMake Warning at cmake/Dependencies.cmake:95 (message): Not compiling with XPU. Could NOT find SYCL. Suppress this warning with -DUSE_XPU=OFF. Call Stack (most recent call first): CMakeLists.txt:873 (include) -- Building using own protobuf under third_party per request. -- Use custom protobuf build. CMake Warning at cmake/ProtoBuf.cmake:37 (message): Ancient protobuf forces CMake compatibility Call Stack (most recent call first): cmake/ProtoBuf.cmake:87 (custom_protobuf_find) cmake/Dependencies.cmake:107 (include) CMakeLists.txt:873 (include) CMake Deprecation Warning at third_party/protobuf/cmake/CMakeLists.txt:2 (cmake_minimum_required): Compatibility with CMake < 3.10 will be removed from a future version of CMake. Update the VERSION argument <min> value. Or, use the <min>...<max> syntax to tell CMake that the project requires at least <min> but has been updated to work with policies introduced by <max> or earlier. -- -- 3.13.0.0 -- Performing Test CMAKE_HAVE_LIBC_PTHREAD -- Performing Test CMAKE_HAVE_LIBC_PTHREAD - Failed -- Looking for pthread_create in pthreads -- Looking for pthread_create in pthreads - not found -- Looking for pthread_create in pthread -- Looking for pthread_create in pthread - not found -- Found Threads: TRUE -- Caffe2 protobuf include directory: $<BUILD_INTERFACE:E:/PyTorch_Build/pytorch/third_party/protobuf/src>$<INSTALL_INTERFACE:include> -- Trying to find preferred BLAS backend of choice: MKL -- MKL_THREADING = OMP -- Looking for sys/types.h -- Looking for sys/types.h - found -- Looking for stdint.h -- Looking for stdint.h - found -- Looking for stddef.h -- Looking for stddef.h - found -- Check size of void* -- Check size of void* - done -- MKL_THREADING = OMP CMake Warning at cmake/Dependencies.cmake:213 (message): MKL could not be found. Defaulting to Eigen Call Stack (most recent call first): CMakeLists.txt:873 (include) CMake Warning at cmake/Dependencies.cmake:279 (message): Preferred BLAS (MKL) cannot be found, now searching for a general BLAS library Call Stack (most recent call first): CMakeLists.txt:873 (include) -- MKL_THREADING = OMP -- Checking for [mkl_intel_lp64 - mkl_intel_thread - mkl_core - libiomp5md] -- Library mkl_intel_lp64: not found -- Checking for [mkl_intel - mkl_intel_thread - mkl_core - libiomp5md] -- Library mkl_intel: not found -- Checking for [mkl_intel_lp64 - mkl_intel_thread - mkl_core] -- Library mkl_intel_lp64: not found -- Checking for [mkl_intel - mkl_intel_thread - mkl_core] -- Library mkl_intel: not found -- Checking for [mkl_intel_lp64 - mkl_sequential - mkl_core] -- Library mkl_intel_lp64: not found -- Checking for [mkl_intel - mkl_sequential - mkl_core] -- Library mkl_intel: not found -- Checking for [mkl_intel_lp64 - mkl_core - libiomp5md - pthread] -- Library mkl_intel_lp64: not found -- Checking for [mkl_intel - mkl_core - libiomp5md - pthread] -- Library mkl_intel: not found -- Checking for [mkl_intel_lp64 - mkl_core - pthread] -- Library mkl_intel_lp64: not found -- Checking for [mkl_intel - mkl_core - pthread] -- Library mkl_intel: not found -- Checking for [mkl - guide - pthread - m] -- Library mkl: not found -- MKL library not found -- Checking for [blis] -- Library blis: BLAS_blis_LIBRARY-NOTFOUND -- Checking for [Accelerate] -- Library Accelerate: BLAS_Accelerate_LIBRARY-NOTFOUND -- Checking for [vecLib] -- Library vecLib: BLAS_vecLib_LIBRARY-NOTFOUND -- Checking for [flexiblas] -- Library flexiblas: BLAS_flexiblas_LIBRARY-NOTFOUND -- Checking for [openblas] -- Library openblas: BLAS_openblas_LIBRARY-NOTFOUND -- Checking for [openblas - pthread - m] -- Library openblas: BLAS_openblas_LIBRARY-NOTFOUND -- Checking for [openblas - pthread - m - gomp] -- Library openblas: BLAS_openblas_LIBRARY-NOTFOUND -- Checking for [libopenblas] -- Library libopenblas: BLAS_libopenblas_LIBRARY-NOTFOUND -- Checking for [goto2 - gfortran] -- Library goto2: BLAS_goto2_LIBRARY-NOTFOUND -- Checking for [goto2 - gfortran - pthread] -- Library goto2: BLAS_goto2_LIBRARY-NOTFOUND -- Checking for [acml - gfortran] -- Library acml: BLAS_acml_LIBRARY-NOTFOUND -- Checking for [blis] -- Library blis: BLAS_blis_LIBRARY-NOTFOUND -- Could NOT find Atlas (missing: Atlas_CBLAS_INCLUDE_DIR Atlas_CLAPACK_INCLUDE_DIR Atlas_CBLAS_LIBRARY Atlas_BLAS_LIBRARY Atlas_LAPACK_LIBRARY) -- Checking for [ptf77blas - atlas - gfortran] -- Library ptf77blas: BLAS_ptf77blas_LIBRARY-NOTFOUND -- Checking for [] -- Looking for sgemm_ -- Looking for sgemm_ - not found -- Cannot find a library with BLAS API. Not using BLAS. -- Using pocketfft in directory: E:/PyTorch_Build/pytorch/third_party/pocketfft/ CMake Deprecation Warning at third_party/pthreadpool/CMakeLists.txt:1 (CMAKE_MINIMUM_REQUIRED): Compatibility with CMake < 3.10 will be removed from a future version of CMake. Update the VERSION argument <min> value. Or, use the <min>...<max> syntax to tell CMake that the project requires at least <min> but has been updated to work with policies introduced by <max> or earlier. CMake Deprecation Warning at third_party/FXdiv/CMakeLists.txt:1 (CMAKE_MINIMUM_REQUIRED): Compatibility with CMake < 3.10 will be removed from a future version of CMake. Update the VERSION argument <min> value. Or, use the <min>...<max> syntax to tell CMake that the project requires at least <min> but has been updated to work with policies introduced by <max> or earlier. CMake Deprecation Warning at third_party/cpuinfo/CMakeLists.txt:1 (CMAKE_MINIMUM_REQUIRED): Compatibility with CMake < 3.10 will be removed from a future version of CMake. Update the VERSION argument <min> value. Or, use the <min>...<max> syntax to tell CMake that the project requires at least <min> but has been updated to work with policies introduced by <max> or earlier. -- The ASM compiler identification is MSVC CMake Warning (dev) at pytorch_env/Lib/site-packages/cmake/data/share/cmake-4.1/Modules/CMakeDetermineASMCompiler.cmake:234 (message): Policy CMP194 is not set: MSVC is not an assembler for language ASM. Run "cmake --help-policy CMP194" for policy details. Use the cmake_policy command to set the policy and suppress this warning. Call Stack (most recent call first): third_party/XNNPACK/CMakeLists.txt:18 (PROJECT) This warning is for project developers. Use -Wno-dev to suppress it. -- Found assembler: C:/Program Files (x86)/Microsoft Visual Studio/2022/BuildTools/VC/Tools/MSVC/14.44.35207/bin/Hostx64/x64/cl.exe -- Building for XNNPACK_TARGET_PROCESSOR: x86_64 -- Generating microkernels.cmake Duplicate microkernel definition: src\qs8-qc4w-packw\gen\qs8-qc4w-packw-x8c8-gemm-goi-avx256vnni.c and src\qs8-qc4w-packw\gen\qs8-qc4w-packw-x8c8-gemm-goi-avxvnni.c (1th function) Duplicate microkernel definition: src\qs8-qc4w-packw\gen\qs8-qc4w-packw-x8c8-gemm-goi-avxvnni.c and src\qs8-qc4w-packw\gen\qs8-qc4w-packw-x8c8-gemm-goi-scalar.c No microkernel found in src\reference\binary-elementwise.cc No microkernel found in src\reference\packing.cc No microkernel found in src\reference\unary-elementwise.cc -- Found Git: E:/Program Files/Git/cmd/git.exe (found version "2.51.0.windows.1") -- Google Benchmark version: v1.9.3, normalized to 1.9.3 -- Looking for shm_open in rt -- Looking for shm_open in rt - not found -- Performing Test HAVE_CXX_FLAG_WX -- Performing Test HAVE_CXX_FLAG_WX - Success -- Compiling and running to test HAVE_STD_REGEX -- Performing Test HAVE_STD_REGEX -- success -- Compiling and running to test HAVE_GNU_POSIX_REGEX -- Performing Test HAVE_GNU_POSIX_REGEX -- failed to compile -- Compiling and running to test HAVE_POSIX_REGEX -- Performing Test HAVE_POSIX_REGEX -- failed to compile -- Compiling and running to test HAVE_STEADY_CLOCK -- Performing Test HAVE_STEADY_CLOCK -- success -- Compiling and running to test HAVE_PTHREAD_AFFINITY -- Performing Test HAVE_PTHREAD_AFFINITY -- failed to compile CMake Deprecation Warning at third_party/ittapi/CMakeLists.txt:7 (cmake_minimum_required): Compatibility with CMake < 3.10 will be removed from a future version of CMake. Update the VERSION argument <min> value. Or, use the <min>...<max> syntax to tell CMake that the project requires at least <min> but has been updated to work with policies introduced by <max> or earlier. CMake Warning at cmake/Dependencies.cmake:749 (message): FP16 is only cmake-2.8 compatible Call Stack (most recent call first): CMakeLists.txt:873 (include) CMake Deprecation Warning at third_party/FP16/CMakeLists.txt:1 (CMAKE_MINIMUM_REQUIRED): Compatibility with CMake < 3.10 will be removed from a future version of CMake. Update the VERSION argument <min> value. Or, use the <min>...<max> syntax to tell CMake that the project requires at least <min> but has been updated to work with policies introduced by <max> or earlier. CMake Deprecation Warning at third_party/psimd/CMakeLists.txt:1 (CMAKE_MINIMUM_REQUIRED): Compatibility with CMake < 3.10 will be removed from a future version of CMake. Update the VERSION argument <min> value. Or, use the <min>...<max> syntax to tell CMake that the project requires at least <min> but has been updated to work with policies introduced by <max> or earlier. -- Using third party subdirectory Eigen. -- Found Python: E:\PyTorch_Build\pytorch\pytorch_env\Scripts\python.exe (found version "3.10.10") found components: Interpreter Development.Module missing components: NumPy CMake Warning at cmake/Dependencies.cmake:826 (message): NumPy could not be found. Not building with NumPy. Suppress this warning with -DUSE_NUMPY=OFF Call Stack (most recent call first): CMakeLists.txt:873 (include) -- Using third_party/pybind11. -- pybind11 include dirs: E:/PyTorch_Build/pytorch/cmake/../third_party/pybind11/include -- Could NOT find OpenTelemetryApi (missing: OpenTelemetryApi_INCLUDE_DIRS) -- Using third_party/opentelemetry-cpp. -- opentelemetry api include dirs: E:/PyTorch_Build/pytorch/cmake/../third_party/opentelemetry-cpp/api/include -- Could NOT find MPI_C (missing: MPI_C_LIB_NAMES MPI_C_HEADER_DIR MPI_C_WORKS) -- Could NOT find MPI_CXX (missing: MPI_CXX_LIB_NAMES MPI_CXX_HEADER_DIR MPI_CXX_WORKS) -- Could NOT find MPI (missing: MPI_C_FOUND MPI_CXX_FOUND) CMake Warning at cmake/Dependencies.cmake:894 (message): Not compiling with MPI. Suppress this warning with -DUSE_MPI=OFF Call Stack (most recent call first): CMakeLists.txt:873 (include) -- MKL_THREADING = OMP -- Check OMP with lib C:/Program Files (x86)/Microsoft Visual Studio/2022/BuildTools/VC/Tools/MSVC/14.44.35207/lib/x64/libomp.lib and flags -openmp:experimental -- MKL_THREADING = OMP -- Check OMP with lib C:/Program Files (x86)/Microsoft Visual Studio/2022/BuildTools/VC/Tools/MSVC/14.44.35207/lib/x64/libomp.lib and flags -openmp:experimental -- Found OpenMP_C: -openmp:experimental -- Found OpenMP_CXX: -openmp:experimental -- Found OpenMP: TRUE -- Adding OpenMP CXX_FLAGS: -openmp:experimental -- Will link against OpenMP libraries: C:/Program Files (x86)/Microsoft Visual Studio/2022/BuildTools/VC/Tools/MSVC/14.44.35207/lib/x64/libomp.lib -- Found nvtx3: E:/PyTorch_Build/pytorch/third_party/NVTX/c/include -- ROCM_PATH environment variable is not set and C:/opt/rocm does not exist. Building without ROCm support. -- Found Python3: E:\PyTorch_Build\pytorch\pytorch_env\Scripts\python.exe (found version "3.10.10") found components: Interpreter -- ONNX_PROTOC_EXECUTABLE: $<TARGET_FILE:protobuf::protoc> -- Protobuf_VERSION: Protobuf_VERSION_NOTFOUND Generated: E:/PyTorch_Build/pytorch/build/third_party/onnx/onnx/onnx_onnx_torch-ml.proto Generated: E:/PyTorch_Build/pytorch/build/third_party/onnx/onnx/onnx-operators_onnx_torch-ml.proto Generated: E:/PyTorch_Build/pytorch/build/third_party/onnx/onnx/onnx-data_onnx_torch.proto -- -- ******** Summary ******** -- CMake version : 4.1.0 -- CMake command : E:/PyTorch_Build/pytorch/pytorch_env/Lib/site-packages/cmake/data/bin/cmake.exe -- System : Windows -- C++ compiler : C:/Program Files (x86)/Microsoft Visual Studio/2022/BuildTools/VC/Tools/MSVC/14.44.35207/bin/Hostx64/x64/cl.exe -- C++ compiler version : 19.44.35215.0 -- CXX flags : /DWIN32 /D_WINDOWS /EHsc /Zc:__cplusplus /bigobj /FS /utf-8 -DUSE_PTHREADPOOL /EHsc /wd26812 -- Build type : Release -- Compile definitions : ONNX_ML=1;ONNXIFI_ENABLE_EXT=1 -- CMAKE_PREFIX_PATH : E:\PyTorch_Build\pytorch\pytorch_env\Lib\site-packages;E:/Program Files/NVIDIA/CUNND/v9.12;E:\Program Files\NVIDIA\CUNND\v9.12;E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0;E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0;E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0 -- CMAKE_INSTALL_PREFIX : E:/PyTorch_Build/pytorch/torch -- CMAKE_MODULE_PATH : E:/PyTorch_Build/pytorch/cmake/Modules;E:/PyTorch_Build/pytorch/cmake/public/../Modules_CUDA_fix -- -- ONNX version : 1.18.0 -- ONNX NAMESPACE : onnx_torch -- ONNX_USE_LITE_PROTO : OFF -- USE_PROTOBUF_SHARED_LIBS : OFF -- ONNX_DISABLE_EXCEPTIONS : OFF -- ONNX_DISABLE_STATIC_REGISTRATION : OFF -- ONNX_WERROR : OFF -- ONNX_BUILD_TESTS : OFF -- BUILD_SHARED_LIBS : OFF -- -- Protobuf compiler : $<TARGET_FILE:protobuf::protoc> -- Protobuf includes : -- Protobuf libraries : -- ONNX_BUILD_PYTHON : OFF -- Found CUDA with FP16 support, compiling with torch.cuda.HalfTensor -- Adding -DNDEBUG to compile flags -- Checking prototype magma_get_sgeqrf_nb for MAGMA_V2 -- Checking prototype magma_get_sgeqrf_nb for MAGMA_V2 - False -- MAGMA not found. Compiling without MAGMA support -- Could not find hardware support for NEON on this machine. -- No OMAP3 processor on this machine. -- No OMAP4 processor on this machine. -- MKL_THREADING = OMP -- Checking for [mkl_intel_lp64 - mkl_intel_thread - mkl_core - libiomp5md] -- Library mkl_intel_lp64: not found -- Checking for [mkl_intel - mkl_intel_thread - mkl_core - libiomp5md] -- Library mkl_intel: not found -- Checking for [mkl_intel_lp64 - mkl_intel_thread - mkl_core] -- Library mkl_intel_lp64: not found -- Checking for [mkl_intel - mkl_intel_thread - mkl_core] -- Library mkl_intel: not found -- Checking for [mkl_intel_lp64 - mkl_sequential - mkl_core] -- Library mkl_intel_lp64: not found -- Checking for [mkl_intel - mkl_sequential - mkl_core] -- Library mkl_intel: not found -- Checking for [mkl_intel_lp64 - mkl_core - libiomp5md - pthread] -- Library mkl_intel_lp64: not found -- Checking for [mkl_intel - mkl_core - libiomp5md - pthread] -- Library mkl_intel: not found -- Checking for [mkl_intel_lp64 - mkl_core - pthread] -- Library mkl_intel_lp64: not found -- Checking for [mkl_intel - mkl_core - pthread] -- Library mkl_intel: not found -- Checking for [mkl - guide - pthread - m] -- Library mkl: not found -- MKL library not found -- Checking for [blis] -- Library blis: BLAS_blis_LIBRARY-NOTFOUND -- Checking for [Accelerate] -- Library Accelerate: BLAS_Accelerate_LIBRARY-NOTFOUND -- Checking for [vecLib] -- Library vecLib: BLAS_vecLib_LIBRARY-NOTFOUND -- Checking for [flexiblas] -- Library flexiblas: BLAS_flexiblas_LIBRARY-NOTFOUND -- Checking for [openblas] -- Library openblas: BLAS_openblas_LIBRARY-NOTFOUND -- Checking for [openblas - pthread - m] -- Library openblas: BLAS_openblas_LIBRARY-NOTFOUND -- Checking for [openblas - pthread - m - gomp] -- Library openblas: BLAS_openblas_LIBRARY-NOTFOUND -- Checking for [libopenblas] -- Library libopenblas: BLAS_libopenblas_LIBRARY-NOTFOUND -- Checking for [goto2 - gfortran] -- Library goto2: BLAS_goto2_LIBRARY-NOTFOUND -- Checking for [goto2 - gfortran - pthread] -- Library goto2: BLAS_goto2_LIBRARY-NOTFOUND -- Checking for [acml - gfortran] -- Library acml: BLAS_acml_LIBRARY-NOTFOUND -- Checking for [blis] -- Library blis: BLAS_blis_LIBRARY-NOTFOUND -- Could NOT find Atlas (missing: Atlas_CBLAS_INCLUDE_DIR Atlas_CLAPACK_INCLUDE_DIR Atlas_CBLAS_LIBRARY Atlas_BLAS_LIBRARY Atlas_LAPACK_LIBRARY) -- Checking for [ptf77blas - atlas - gfortran] -- Library ptf77blas: BLAS_ptf77blas_LIBRARY-NOTFOUND -- Checking for [] -- Cannot find a library with BLAS API. Not using BLAS. -- LAPACK requires BLAS -- Cannot find a library with LAPACK API. Not using LAPACK. -- MIOpen not found. Compiling without MIOpen support disabling ROCM because NOT USE_ROCM is set disabling MKLDNN because USE_MKLDNN is not set -- {fmt} version: 11.2.0 -- Build type: Release -- Using Kineto with CUPTI support -- Configuring Kineto dependency: -- KINETO_SOURCE_DIR = E:/PyTorch_Build/pytorch/third_party/kineto/libkineto -- KINETO_BUILD_TESTS = OFF -- KINETO_LIBRARY_TYPE = static -- CUDA_SOURCE_DIR = E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0 -- CUDA_INCLUDE_DIRS = E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0/include -- CUPTI_INCLUDE_DIR = E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0/extras/CUPTI/include -- CUDA_cupti_LIBRARY = E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0/extras/CUPTI/lib64/cupti.lib -- Found CUPTI CMake Deprecation Warning at third_party/kineto/libkineto/CMakeLists.txt:7 (cmake_minimum_required): Compatibility with CMake < 3.10 will be removed from a future version of CMake. Update the VERSION argument <min> value. Or, use the <min>...<max> syntax to tell CMake that the project requires at least <min> but has been updated to work with policies introduced by <max> or earlier. CMake Warning (dev) at third_party/kineto/libkineto/CMakeLists.txt:15 (find_package): Policy CMP0148 is not set: The FindPythonInterp and FindPythonLibs modules are removed. Run "cmake --help-policy CMP0148" for policy details. Use the cmake_policy command to set the policy and suppress this warning. This warning is for project developers. Use -Wno-dev to suppress it. -- Found PythonInterp: E:/PyTorch_Build/pytorch/pytorch_env/Scripts/python.exe (found version "3.10.10") -- ROCM_SOURCE_DIR = -- Kineto: FMT_SOURCE_DIR = E:/PyTorch_Build/pytorch/third_party/fmt -- Kineto: FMT_INCLUDE_DIR = E:/PyTorch_Build/pytorch/third_party/fmt/include -- CUPTI_INCLUDE_DIR = E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0/extras/CUPTI/include -- ROCTRACER_INCLUDE_DIR = /include/roctracer -- DYNOLOG_INCLUDE_DIR = E:/PyTorch_Build/pytorch/third_party/kineto/libkineto/third_party/dynolog/ -- IPCFABRIC_INCLUDE_DIR = E:/PyTorch_Build/pytorch/third_party/kineto/libkineto/third_party/dynolog//dynolog/src/ipcfabric/ -- Configured Kineto -- Performing Test HAS/WD4624 -- Performing Test HAS/WD4624 - Success -- Performing Test HAS/WD4068 -- Performing Test HAS/WD4068 - Success -- Performing Test HAS/WD4067 -- Performing Test HAS/WD4067 - Success -- Performing Test HAS/WD4267 -- Performing Test HAS/WD4267 - Success -- Performing Test HAS/WD4661 -- Performing Test HAS/WD4661 - Success -- Performing Test HAS/WD4717 -- Performing Test HAS/WD4717 - Success -- Performing Test HAS/WD4244 -- Performing Test HAS/WD4244 - Success -- Performing Test HAS/WD4804 -- Performing Test HAS/WD4804 - Success -- Performing Test HAS/WD4273 -- Performing Test HAS/WD4273 - Success -- Performing Test HAS_WNO_STRINGOP_OVERFLOW -- Performing Test HAS_WNO_STRINGOP_OVERFLOW - Failed -- -- Architecture: x64 -- Use the C++ compiler to compile (MI_USE_CXX=ON) -- -- Library name : mimalloc -- Version : 2.2.4 -- Build type : release -- C++ Compiler : C:/Program Files (x86)/Microsoft Visual Studio/2022/BuildTools/VC/Tools/MSVC/14.44.35207/bin/Hostx64/x64/cl.exe -- Compiler flags : /Zc:__cplusplus -- Compiler defines : MI_CMAKE_BUILD_TYPE=release;MI_BUILD_RELEASE -- Link libraries : psapi;shell32;user32;advapi32;bcrypt -- Build targets : static -- CMake Error at CMakeLists.txt:1264 (add_subdirectory): The source directory E:/PyTorch_Build/pytorch/torch/headeronly does not contain a CMakeLists.txt file. -- don't use NUMA -- Looking for backtrace -- Looking for backtrace - not found -- Could NOT find Backtrace (missing: Backtrace_LIBRARY Backtrace_INCLUDE_DIR) -- Autodetected CUDA architecture(s): 12.0 -- Autodetected CUDA architecture(s): 12.0 -- Autodetected CUDA architecture(s): 12.0 -- headers outputs: torch\csrc\inductor\aoti_torch\generated\c_shim_cpu.h not found torch\csrc\inductor\aoti_torch\generated\c_shim_aten.h not found torch\csrc\inductor\aoti_torch\generated\c_shim_cuda.h not found -- sources outputs: -- declarations_yaml outputs: -- Performing Test COMPILER_SUPPORTS_NO_AVX256_SPLIT -- Performing Test COMPILER_SUPPORTS_NO_AVX256_SPLIT - Failed -- Using ATen parallel backend: OMP -- Could NOT find OpenSSL, try to set the path to OpenSSL root folder in the system variable OPENSSL_ROOT_DIR (missing: OPENSSL_CRYPTO_LIBRARY OPENSSL_INCLUDE_DIR) -- Check size of long double -- Check size of long double - done -- Performing Test COMPILER_SUPPORTS_FLOAT128 -- Performing Test COMPILER_SUPPORTS_FLOAT128 - Failed -- Performing Test COMPILER_SUPPORTS_SSE2 -- Performing Test COMPILER_SUPPORTS_SSE2 - Success -- Performing Test COMPILER_SUPPORTS_SSE4 -- Performing Test COMPILER_SUPPORTS_SSE4 - Success -- Performing Test COMPILER_SUPPORTS_AVX -- Performing Test COMPILER_SUPPORTS_AVX - Success -- Performing Test COMPILER_SUPPORTS_FMA4 -- Performing Test COMPILER_SUPPORTS_FMA4 - Success -- Performing Test COMPILER_SUPPORTS_AVX2 -- Performing Test COMPILER_SUPPORTS_AVX2 - Success -- Performing Test COMPILER_SUPPORTS_AVX512F -- Performing Test COMPILER_SUPPORTS_AVX512F - Success -- Found OpenMP_C: -openmp:experimental (found version "2.0") -- Found OpenMP_CXX: -openmp:experimental (found version "2.0") -- Found OpenMP_CUDA: -openmp (found version "2.0") -- Found OpenMP: TRUE (found version "2.0") -- Performing Test COMPILER_SUPPORTS_OPENMP -- Performing Test COMPILER_SUPPORTS_OPENMP - Success -- Performing Test COMPILER_SUPPORTS_OMP_SIMD -- Performing Test COMPILER_SUPPORTS_OMP_SIMD - Failed -- Performing Test COMPILER_SUPPORTS_WEAK_ALIASES -- Performing Test COMPILER_SUPPORTS_WEAK_ALIASES - Failed -- Performing Test COMPILER_SUPPORTS_BUILTIN_MATH -- Performing Test COMPILER_SUPPORTS_BUILTIN_MATH - Failed -- Performing Test COMPILER_SUPPORTS_SYS_GETRANDOM -- Performing Test COMPILER_SUPPORTS_SYS_GETRANDOM - Failed -- Configuring build for SLEEF-v3.8.0 Target system: Windows-10.0.26100 Target processor: AMD64 Host system: Windows-10.0.26100 Host processor: AMD64 Detected C compiler: MSVC @ C:/Program Files (x86)/Microsoft Visual Studio/2022/BuildTools/VC/Tools/MSVC/14.44.35207/bin/Hostx64/x64/cl.exe CMake: 4.1.0 Make program: E:/PyTorch_Build/pytorch/pytorch_env/Scripts/ninja.exe -- Using option `/D_CRT_SECURE_NO_WARNINGS /D_CRT_NONSTDC_NO_DEPRECATE ` to compile libsleef -- Building shared libs : OFF -- Building static test bins: OFF -- MPFR : LIB_MPFR-NOTFOUND -- GMP : LIBGMP-NOTFOUND -- RT : -- FFTW3 : LIBFFTW3-NOTFOUND -- OPENSSL : -- SDE : SDE_COMMAND-NOTFOUND -- COMPILER_SUPPORTS_OPENMP : FALSE AT_INSTALL_INCLUDE_DIR include/ATen/core core header install: E:/PyTorch_Build/pytorch/build/aten/src/ATen/core/aten_interned_strings.h core header install: E:/PyTorch_Build/pytorch/build/aten/src/ATen/core/enum_tag.h core header install: E:/PyTorch_Build/pytorch/build/aten/src/ATen/core/TensorBody.h CMake Error: File E:/PyTorch_Build/pytorch/torch/_utils_internal.py does not exist. CMake Error at caffe2/CMakeLists.txt:241 (configure_file): configure_file Problem configuring file CMake Error: File E:/PyTorch_Build/pytorch/torch/csrc/api/include/torch/version.h.in does not exist. CMake Error at caffe2/CMakeLists.txt:246 (configure_file): configure_file Problem configuring file -- NVSHMEM not found, not building with NVSHMEM support. CMake Error at caffe2/CMakeLists.txt:1398 (add_subdirectory): The source directory E:/PyTorch_Build/pytorch/torch does not contain a CMakeLists.txt file. CMake Warning at CMakeLists.txt:1285 (message): Generated cmake files are only fully tested if one builds with system glog, gflags, and protobuf. Other settings may generate files that are not well tested. -- -- ******** Summary ******** -- General: -- CMake version : 4.1.0 -- CMake command : E:/PyTorch_Build/pytorch/pytorch_env/Lib/site-packages/cmake/data/bin/cmake.exe -- System : Windows -- C++ compiler : C:/Program Files (x86)/Microsoft Visual Studio/2022/BuildTools/VC/Tools/MSVC/14.44.35207/bin/Hostx64/x64/cl.exe -- C++ compiler id : MSVC -- C++ compiler version : 19.44.35215.0 -- Using ccache if found : OFF -- CXX flags : /DWIN32 /D_WINDOWS /EHsc /Zc:__cplusplus /bigobj /FS /utf-8 -DUSE_PTHREADPOOL -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOROCTRACER -DLIBKINETO_NOXPUPTI=ON -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE /wd4624 /wd4068 /wd4067 /wd4267 /wd4661 /wd4717 /wd4244 /wd4804 /wd4273 -- Shared LD flags : /machine:x64 /ignore:4049 /ignore:4217 /ignore:4099 -- Static LD flags : /machine:x64 /ignore:4049 /ignore:4217 /ignore:4099 -- Module LD flags : /machine:x64 /ignore:4049 /ignore:4217 /ignore:4099 -- Build type : Release -- Compile definitions : ONNX_ML=1;ONNXIFI_ENABLE_EXT=1;ONNX_NAMESPACE=onnx_torch;_CRT_SECURE_NO_DEPRECATE=1;USE_EXTERNAL_MZCRC;MINIZ_DISABLE_ZIP_READER_CRC32_CHECKS;EXPORT_AOTI_FUNCTIONS;WIN32_LEAN_AND_MEAN;_UCRT_LEGACY_INFINITY;NOMINMAX;USE_MIMALLOC -- CMAKE_PREFIX_PATH : E:\PyTorch_Build\pytorch\pytorch_env\Lib\site-packages;E:/Program Files/NVIDIA/CUNND/v9.12;E:\Program Files\NVIDIA\CUNND\v9.12;E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0;E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0;E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0 -- CMAKE_INSTALL_PREFIX : E:/PyTorch_Build/pytorch/torch -- USE_GOLD_LINKER : OFF -- -- TORCH_VERSION : 2.9.0 -- BUILD_STATIC_RUNTIME_BENCHMARK: OFF -- BUILD_BINARY : OFF -- BUILD_CUSTOM_PROTOBUF : ON -- Link local protobuf : ON -- BUILD_PYTHON : True -- Python version : 3.10.10 -- Python executable : E:\PyTorch_Build\pytorch\pytorch_env\Scripts\python.exe -- Python library : E:/Python310/libs/python310.lib -- Python includes : E:/Python310/Include -- Python site-package : E:\PyTorch_Build\pytorch\pytorch_env\Lib\site-packages -- BUILD_SHARED_LIBS : ON -- CAFFE2_USE_MSVC_STATIC_RUNTIME : OFF -- BUILD_TEST : True -- BUILD_JNI : OFF -- BUILD_MOBILE_AUTOGRAD : OFF -- BUILD_LITE_INTERPRETER: OFF -- INTERN_BUILD_MOBILE : -- TRACING_BASED : OFF -- USE_BLAS : 0 -- USE_LAPACK : 0 -- USE_ASAN : OFF -- USE_TSAN : OFF -- USE_CPP_CODE_COVERAGE : OFF -- USE_CUDA : ON -- CUDA static link : OFF -- USE_CUDNN : OFF -- USE_CUSPARSELT : OFF -- USE_CUDSS : OFF -- USE_CUFILE : OFF -- CUDA version : 13.0 -- USE_FLASH_ATTENTION : OFF -- USE_MEM_EFF_ATTENTION : ON -- CUDA root directory : E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0 -- CUDA library : E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0/lib/x64/cuda.lib -- cudart library : E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0/lib/x64/cudart.lib -- cublas library : E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0/lib/x64/cublas.lib -- cufft library : E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0/lib/x64/cufft.lib -- curand library : E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0/lib/x64/curand.lib -- cusparse library : E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0/lib/x64/cusparse.lib -- nvrtc : E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0/lib/x64/nvrtc.lib -- CUDA include path : E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0/include -- NVCC executable : E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0/bin/nvcc.exe -- CUDA compiler : E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0/bin/nvcc.exe -- CUDA flags : -DLIBCUDACXX_ENABLE_SIMPLIFIED_COMPLEX_OPERATIONS -Xcompiler /Zc:__cplusplus -Xcompiler /w -w -Xcompiler /FS -Xfatbin -compress-all -DONNX_NAMESPACE=onnx_torch --use-local-env -gencode arch=compute_120,code=sm_120 -Xcudafe --diag_suppress=cc_clobber_ignored,--diag_suppress=field_without_dll_interface,--diag_suppress=base_class_has_different_dll_interface,--diag_suppress=dll_interface_conflict_none_assumed,--diag_suppress=dll_interface_conflict_dllexport_assumed,--diag_suppress=bad_friend_decl --Werror cross-execution-space-call --no-host-device-move-forward --expt-relaxed-constexpr --expt-extended-lambda -Xcompiler=/wd4819,/wd4503,/wd4190,/wd4244,/wd4251,/wd4275,/wd4522 -Wno-deprecated-gpu-targets --expt-extended-lambda -DCUB_WRAPPED_NAMESPACE=at_cuda_detail -DCUDA_HAS_FP16=1 -D__CUDA_NO_HALF_OPERATORS__ -D__CUDA_NO_HALF_CONVERSIONS__ -D__CUDA_NO_HALF2_OPERATORS__ -D__CUDA_NO_BFLOAT16_CONVERSIONS__ -- CUDA host compiler : -- CUDA --device-c : OFF -- USE_TENSORRT : -- USE_XPU : OFF -- USE_ROCM : OFF -- BUILD_NVFUSER : -- USE_EIGEN_FOR_BLAS : ON -- USE_EIGEN_FOR_SPARSE : OFF -- USE_FBGEMM : OFF -- USE_KINETO : ON -- USE_GFLAGS : OFF -- USE_GLOG : OFF -- USE_LITE_PROTO : OFF -- USE_PYTORCH_METAL : OFF -- USE_PYTORCH_METAL_EXPORT : OFF -- USE_MPS : OFF -- CAN_COMPILE_METAL : -- USE_MKL : OFF -- USE_MKLDNN : OFF -- USE_UCC : OFF -- USE_ITT : ON -- USE_XCCL : OFF -- USE_NCCL : OFF -- Found NVSHMEM : -- USE_NNPACK : OFF -- USE_NUMPY : OFF -- USE_OBSERVERS : ON -- USE_OPENCL : OFF -- USE_OPENMP : ON -- USE_MIMALLOC : ON -- USE_MIMALLOC_ON_MKL : OFF -- USE_VULKAN : OFF -- USE_PROF : OFF -- USE_PYTORCH_QNNPACK : OFF -- USE_XNNPACK : ON -- USE_DISTRIBUTED : OFF -- Public Dependencies : -- Private Dependencies : Threads::Threads;pthreadpool;cpuinfo;XNNPACK;microkernels-prod;ittnotify;fp16;caffe2::openmp;fmt::fmt-header-only;kineto -- Public CUDA Deps. : -- Private CUDA Deps. : caffe2::curand;caffe2::cufft;caffe2::cublas;fmt::fmt-header-only;E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0/lib/x64/cudart_static.lib;CUDA::cusparse;CUDA::cufft;CUDA::cusolver;ATEN_CUDA_FILES_GEN_LIB -- USE_COREML_DELEGATE : OFF -- BUILD_LAZY_TS_BACKEND : ON -- USE_ROCM_KERNEL_ASSERT : OFF -- Performing Test HAS_WMISSING_PROTOTYPES -- Performing Test HAS_WMISSING_PROTOTYPES - Failed -- Performing Test HAS_WERROR_MISSING_PROTOTYPES -- Performing Test HAS_WERROR_MISSING_PROTOTYPES - Failed -- Configuring incomplete, errors occurred! -- Checkout nccl release tag: v2.27.5-1 (pytorch_env) PS E:\PyTorch_Build\pytorch> (pytorch_env) PS E:\PyTorch_Build\pytorch> # 验证构建 (pytorch_env) PS E:\PyTorch_Build\pytorch> python -c "import torch; print(f'cuDNN version: {torch.backends.cudnn.version()}')" Traceback (most recent call last): File "<string>", line 1, in <module> AttributeError: module 'torch' has no attribute 'backends' (pytorch_env) PS E:\PyTorch_Build\pytorch> # 检查核心组件 (pytorch_env) PS E:\PyTorch_Build\pytorch> python -c "import torch; >> print(f'PyTorch: {torch.__version__}'); >> print(f'CUDA available: {torch.cuda.is_available()}'); >> print(f'cuDNN: {torch.backends.cudnn.version()}'); >> print(f'MKL: {torch.__config__.mkl_is_available()}'); >> print(f'Libuv: {torch.distributed.is_available()}')" Traceback (most recent call last): File "<string>", line 2, in <module> AttributeError: module 'torch' has no attribute '__version__' (pytorch_env) PS E:\PyTorch_Build\pytorch>
09-02
PowerShell 7 环境已加载 (版本: 7.5.2) PowerShell 7 环境已加载 (版本: 7.5.2) PS C:\Users\Administrator\Desktop> cd E:\PyTorch_Build\pytorch PS E:\PyTorch_Build\pytorch> .\pytorch_env\Scripts\activate (pytorch_env) PS E:\PyTorch_Build\pytorch> # 退出虚拟环境 (pytorch_env) PS E:\PyTorch_Build\pytorch> deactivate PS E:\PyTorch_Build\pytorch> PS E:\PyTorch_Build\pytorch> # 删除旧环境 PS E:\PyTorch_Build\pytorch> Remove-Item -Recurse -Force .\pytorch_env PS E:\PyTorch_Build\pytorch> Remove-Item -Recurse -Force .\cuda_env PS E:\PyTorch_Build\pytorch> PS E:\PyTorch_Build\pytorch> # 创建新虚拟环境 PS E:\PyTorch_Build\pytorch> python -m venv rtx5070_env PS E:\PyTorch_Build\pytorch> .\rtx5070_env\Scripts\activate (rtx5070_env) PS E:\PyTorch_Build\pytorch> (rtx5070_env) PS E:\PyTorch_Build\pytorch> # 安装基础编译工具 (rtx5070_env) PS E:\PyTorch_Build\pytorch> pip install -U pip setuptools wheel ninja cmake Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple Requirement already satisfied: pip in e:\pytorch_build\pytorch\rtx5070_env\lib\site-packages (22.3.1) Collecting pip Using cached https://pypi.tuna.tsinghua.edu.cn/packages/b7/3f/945ef7ab14dc4f9d7f40288d2df998d1837ee0888ec3659c813487572faa/pip-25.2-py3-none-any.whl (1.8 MB) Requirement already satisfied: setuptools in e:\pytorch_build\pytorch\rtx5070_env\lib\site-packages (65.5.0) Collecting setuptools Using cached https://pypi.tuna.tsinghua.edu.cn/packages/a3/dc/17031897dae0efacfea57dfd3a82fdd2a2aeb58e0ff71b77b87e44edc772/setuptools-80.9.0-py3-none-any.whl (1.2 MB) Collecting wheel Using cached https://pypi.tuna.tsinghua.edu.cn/packages/0b/2c/87f3254fd8ffd29e4c02732eee68a83a1d3c346ae39bc6822dcbcb697f2b/wheel-0.45.1-py3-none-any.whl (72 kB) Collecting ninja Using cached https://pypi.tuna.tsinghua.edu.cn/packages/29/45/c0adfbfb0b5895aa18cec400c535b4f7ff3e52536e0403602fc1a23f7de9/ninja-1.13.0-py3-none-win_amd64.whl (309 kB) Collecting cmake Using cached https://pypi.tuna.tsinghua.edu.cn/packages/7c/d0/73cae88d8c25973f2465d5a4457264f95617c16ad321824ed4c243734511/cmake-4.1.0-py3-none-win_amd64.whl (37.6 MB) ERROR: To modify pip, please run the following command: E:\PyTorch_Build\pytorch\rtx5070_env\Scripts\python.exe -m pip install -U pip setuptools wheel ninja cmake [notice] A new release of pip available: 22.3.1 -> 25.2 [notice] To update, run: python.exe -m pip install --upgrade pip (rtx5070_env) PS E:\PyTorch_Build\pytorch> (rtx5070_env) PS E:\PyTorch_Build\pytorch> # 验证 CUDA 安装 (rtx5070_env) PS E:\PyTorch_Build\pytorch> nvcc --version # 应显示 CUDA 12.x nvcc: NVIDIA (R) Cuda compiler driver Copyright (c) 2005-2025 NVIDIA Corporation Built on Wed_Jul_16_20:06:48_Pacific_Daylight_Time_2025 Cuda compilation tools, release 13.0, V13.0.48 Build cuda_13.0.r13.0/compiler.36260728_0 (rtx5070_env) PS E:\PyTorch_Build\pytorch> # 正确更新 pip 和工具链 (rtx5070_env) PS E:\PyTorch_Build\pytorch> python -m pip install -U pip setuptools wheel ninja cmake Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple Requirement already satisfied: pip in e:\pytorch_build\pytorch\rtx5070_env\lib\site-packages (22.3.1) Collecting pip Using cached https://pypi.tuna.tsinghua.edu.cn/packages/b7/3f/945ef7ab14dc4f9d7f40288d2df998d1837ee0888ec3659c813487572faa/pip-25.2-py3-none-any.whl (1.8 MB) Requirement already satisfied: setuptools in e:\pytorch_build\pytorch\rtx5070_env\lib\site-packages (65.5.0) Collecting setuptools Using cached https://pypi.tuna.tsinghua.edu.cn/packages/a3/dc/17031897dae0efacfea57dfd3a82fdd2a2aeb58e0ff71b77b87e44edc772/setuptools-80.9.0-py3-none-any.whl (1.2 MB) Collecting wheel Using cached https://pypi.tuna.tsinghua.edu.cn/packages/0b/2c/87f3254fd8ffd29e4c02732eee68a83a1d3c346ae39bc6822dcbcb697f2b/wheel-0.45.1-py3-none-any.whl (72 kB) Collecting ninja Using cached https://pypi.tuna.tsinghua.edu.cn/packages/29/45/c0adfbfb0b5895aa18cec400c535b4f7ff3e52536e0403602fc1a23f7de9/ninja-1.13.0-py3-none-win_amd64.whl (309 kB) Collecting cmake Using cached https://pypi.tuna.tsinghua.edu.cn/packages/7c/d0/73cae88d8c25973f2465d5a4457264f95617c16ad321824ed4c243734511/cmake-4.1.0-py3-none-win_amd64.whl (37.6 MB) Installing collected packages: wheel, setuptools, pip, ninja, cmake Attempting uninstall: setuptools Found existing installation: setuptools 65.5.0 Uninstalling setuptools-65.5.0: Successfully uninstalled setuptools-65.5.0 Attempting uninstall: pip Found existing installation: pip 22.3.1 Uninstalling pip-22.3.1: Successfully uninstalled pip-22.3.1 Successfully installed cmake-4.1.0 ninja-1.13.0 pip-25.2 setuptools-80.9.0 wheel-0.45.1 (rtx5070_env) PS E:\PyTorch_Build\pytorch> (rtx5070_env) PS E:\PyTorch_Build\pytorch> # 验证版本 (rtx5070_env) PS E:\PyTorch_Build\pytorch> pip --version # 应显示 25.2+ pip 25.2 from E:\PyTorch_Build\pytorch\rtx5070_env\lib\site-packages\pip (python 3.10) (rtx5070_env) PS E:\PyTorch_Build\pytorch> cmake --version # 应显示 4.1.0+ cmake version 4.1.0 CMake suite maintained and supported by Kitware (kitware.com/cmake). (rtx5070_env) PS E:\PyTorch_Build\pytorch> ninja --version # 应显示 1.13.0+ 1.13.0.git.kitware.jobserver-pipe-1 (rtx5070_env) PS E:\PyTorch_Build\pytorch> # 设置 CUDA 12.1 环境变量 (rtx5070_env) PS E:\PyTorch_Build\pytorch> $env:CUDA_PATH = "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.1" (rtx5070_env) PS E:\PyTorch_Build\pytorch> $env:PATH = "$env:CUDA_PATH\bin;" + $env:PATH (rtx5070_env) PS E:\PyTorch_Build\pytorch> (rtx5070_env) PS E:\PyTorch_Build\pytorch> # 验证 CUDA 版本 (rtx5070_env) PS E:\PyTorch_Build\pytorch> nvcc --version # 应显示 release 12.1 nvcc: NVIDIA (R) Cuda compiler driver Copyright (c) 2005-2025 NVIDIA Corporation Built on Wed_Jul_16_20:06:48_Pacific_Daylight_Time_2025 Cuda compilation tools, release 13.0, V13.0.48 Build cuda_13.0.r13.0/compiler.36260728_0 (rtx5070_env) PS E:\PyTorch_Build\pytorch> (rtx5070_env) PS E:\PyTorch_Build\pytorch> # 设置 cuDNN 路径(根据实际安装位置) (rtx5070_env) PS E:\PyTorch_Build\pytorch> $env:CUDNN_INCLUDE_DIR = "$env:CUDA_PATH\include" (rtx5070_env) PS E:\PyTorch_Build\pytorch> $env:CUDNN_LIBRARY = "$env:CUDA_PATH\lib\x64\cudnn.lib" (rtx5070_env) PS E:\PyTorch_Build\pytorch> # 安装必要依赖 (rtx5070_env) PS E:\PyTorch_Build\pytorch> pip install pyyaml numpy typing_extensions Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple Collecting pyyaml Using cached https://pypi.tuna.tsinghua.edu.cn/packages/b5/84/0fa4b06f6d6c958d207620fc60005e241ecedceee58931bb20138e1e5776/PyYAML-6.0.2-cp310-cp310-win_amd64.whl (161 kB) Collecting numpy Using cached https://pypi.tuna.tsinghua.edu.cn/packages/a3/dd/4b822569d6b96c39d1215dbae0582fd99954dcbcf0c1a13c61783feaca3f/numpy-2.2.6-cp310-cp310-win_amd64.whl (12.9 MB) Collecting typing_extensions Using cached https://pypi.tuna.tsinghua.edu.cn/packages/18/67/36e9267722cc04a6b9f15c7f3441c2363321a3ea07da7ae0c0707beb2a9c/typing_extensions-4.15.0-py3-none-any.whl (44 kB) Installing collected packages: typing_extensions, pyyaml, numpy Successfully installed numpy-2.2.6 pyyaml-6.0.2 typing_extensions-4.15.0 (rtx5070_env) PS E:\PyTorch_Build\pytorch> (rtx5070_env) PS E:\PyTorch_Build\pytorch> # 安装 GPU 相关依赖 (rtx5070_env) PS E:\PyTorch_Build\pytorch> pip install mkl mkl-include intel-openmp Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple Collecting mkl Using cached https://pypi.tuna.tsinghua.edu.cn/packages/91/ae/025174ee141432b974f97ecd2aea529a3bdb547392bde3dd55ce48fe7827/mkl-2025.2.0-py2.py3-none-win_amd64.whl (153.6 MB) Collecting mkl-include Using cached https://pypi.tuna.tsinghua.edu.cn/packages/06/87/3eee37bf95c6b820b6394ad98e50132798514ecda1b2584c71c2c96b973c/mkl_include-2025.2.0-py2.py3-none-win_amd64.whl (1.3 MB) Collecting intel-openmp Using cached https://pypi.tuna.tsinghua.edu.cn/packages/89/ed/13fed53fcc7ea17ff84095e89e63418df91d4eeefdc74454243d529bf5a3/intel_openmp-2025.2.1-py2.py3-none-win_amd64.whl (34.0 MB) Collecting tbb==2022.* (from mkl) Using cached https://pypi.tuna.tsinghua.edu.cn/packages/4e/d2/01e2a93f9c644585088188840bf453f23ed1a2838ec51d5ba1ada1ebca71/tbb-2022.2.0-py3-none-win_amd64.whl (420 kB) Collecting intel-cmplr-lib-ur==2025.2.1 (from intel-openmp) Using cached https://pypi.tuna.tsinghua.edu.cn/packages/a8/70/938e81f58886fd4e114d5a5480d98c1396e73e40b7650f566ad0c4395311/intel_cmplr_lib_ur-2025.2.1-py2.py3-none-win_amd64.whl (1.2 MB) Collecting umf==0.11.* (from intel-cmplr-lib-ur==2025.2.1->intel-openmp) Using cached https://pypi.tuna.tsinghua.edu.cn/packages/33/a0/c8d755f08f50ddd99cb4a29a7e950ced7a0903cb72253e57059063609103/umf-0.11.0-py2.py3-none-win_amd64.whl (231 kB) Collecting tcmlib==1.* (from tbb==2022.*->mkl) Using cached https://pypi.tuna.tsinghua.edu.cn/packages/91/7b/e30c461a27b97e0090e4db822eeb1d37b310863241f8c3ee56f68df3e76e/tcmlib-1.4.0-py2.py3-none-win_amd64.whl (370 kB) Installing collected packages: tcmlib, mkl-include, umf, tbb, intel-cmplr-lib-ur, intel-openmp, mkl Successfully installed intel-cmplr-lib-ur-2025.2.1 intel-openmp-2025.2.1 mkl-2025.2.0 mkl-include-2025.2.0 tbb-2022.2.0 tcmlib-1.4.0 umf-0.11.0 (rtx5070_env) PS E:\PyTorch_Build\pytorch> # 安装必要依赖 (rtx5070_env) PS E:\PyTorch_Build\pytorch> pip install pyyaml numpy typing_extensions Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple Requirement already satisfied: pyyaml in e:\pytorch_build\pytorch\rtx5070_env\lib\site-packages (6.0.2) Requirement already satisfied: numpy in e:\pytorch_build\pytorch\rtx5070_env\lib\site-packages (2.2.6) Requirement already satisfied: typing_extensions in e:\pytorch_build\pytorch\rtx5070_env\lib\site-packages (4.15.0) (rtx5070_env) PS E:\PyTorch_Build\pytorch> (rtx5070_env) PS E:\PyTorch_Build\pytorch> # 安装 GPU 相关依赖 (rtx5070_env) PS E:\PyTorch_Build\pytorch> pip install mkl mkl-include intel-openmp Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple Requirement already satisfied: mkl in e:\pytorch_build\pytorch\rtx5070_env\lib\site-packages (2025.2.0) Requirement already satisfied: mkl-include in e:\pytorch_build\pytorch\rtx5070_env\lib\site-packages (2025.2.0) Requirement already satisfied: intel-openmp in e:\pytorch_build\pytorch\rtx5070_env\lib\site-packages (2025.2.1) Requirement already satisfied: tbb==2022.* in e:\pytorch_build\pytorch\rtx5070_env\lib\site-packages (from mkl) (2022.2.0) Requirement already satisfied: intel-cmplr-lib-ur==2025.2.1 in e:\pytorch_build\pytorch\rtx5070_env\lib\site-packages (from intel-openmp) (2025.2.1) Requirement already satisfied: umf==0.11.* in e:\pytorch_build\pytorch\rtx5070_env\lib\site-packages (from intel-cmplr-lib-ur==2025.2.1->intel-openmp) (0.11.0) Requirement already satisfied: tcmlib==1.* in e:\pytorch_build\pytorch\rtx5070_env\lib\site-packages (from tbb==2022.*->mkl) (1.4.0) (rtx5070_env) PS E:\PyTorch_Build\pytorch> # 设置编译参数 (rtx5070_env) PS E:\PyTorch_Build\pytorch> $env:USE_CUDA=1 (rtx5070_env) PS E:\PyTorch_Build\pytorch> $env:USE_CUDNN=1 (rtx5070_env) PS E:\PyTorch_Build\pytorch> $env:CMAKE_GENERATOR="Ninja" (rtx5070_env) PS E:\PyTorch_Build\pytorch> $env:MAX_JOBS=8 # 根据 CPU 核心数设置 (rtx5070_env) PS E:\PyTorch_Build\pytorch> (rtx5070_env) PS E:\PyTorch_Build\pytorch> # 运行编译 (rtx5070_env) PS E:\PyTorch_Build\pytorch> python setup.py install ` >> --cmake ` >> --cmake-only ` >> --cmake-generator="Ninja" ` >> --verbose ` >> -DCMAKE_CUDA_COMPILER="${env:CUDA_PATH}\bin\nvcc.exe" ` >> -DCUDNN_INCLUDE_DIR="${env:CUDNN_INCLUDE_DIR}" ` >> -DCUDNN_LIBRARY="${env:CUDNN_LIBRARY}" ` >> -DTORCH_CUDA_ARCH_LIST="8.9;9.0;12.0" Building wheel torch-2.9.0a0+git2d31c3d option --cmake-generator not recognized (rtx5070_env) PS E:\PyTorch_Build\pytorch> python rtx5070_test.py ============================================================ Traceback (most recent call last): File "E:\PyTorch_Build\pytorch\rtx5070_test.py", line 39, in <module> verify_gpu_support() File "E:\PyTorch_Build\pytorch\rtx5070_test.py", line 6, in verify_gpu_support if not torch.cuda.is_available(): AttributeError: module 'torch' has no attribute 'cuda' (rtx5070_env) PS E:\PyTorch_Build\pytorch> # 设置编译架构参数 (rtx5070_env) PS E:\PyTorch_Build\pytorch> $env:TORCH_CUDA_ARCH_LIST="8.9;9.0;12.0" (rtx5070_env) PS E:\PyTorch_Build\pytorch> (rtx5070_env) PS E:\PyTorch_Build\pytorch> # 使用正确的编译命令 (rtx5070_env) PS E:\PyTorch_Build\pytorch> python setup.py install ` >> --cmake ` >> --verbose ` >> -DCMAKE_CUDA_COMPILER="${env:CUDA_PATH}\bin\nvcc.exe" ` >> -DCUDNN_INCLUDE_DIR="${env:CUDNN_INCLUDE_DIR}" ` >> -DCUDNN_LIBRARY="${env:CUDNN_LIBRARY}" ` >> -DCMAKE_GENERATOR="Ninja" ` >> -DUSE_CUDA=ON ` >> -DUSE_CUDNN=ON Building wheel torch-2.9.0a0+git2d31c3d option -D not recognized (rtx5070_env) PS E:\PyTorch_Build\pytorch> python enhanced_test.py ============================================================ Python 版本: 3.10.10 Traceback (most recent call last): File "E:\PyTorch_Build\pytorch\enhanced_test.py", line 64, in <module> verify_installation() File "E:\PyTorch_Build\pytorch\enhanced_test.py", line 11, in verify_installation print(f"\nPyTorch 版本: {torch.__version__}") AttributeError: module 'torch' has no attribute '__version__' (rtx5070_env) PS E:\PyTorch_Build\pytorch> # 清除之前的构建 (rtx5070_env) PS E:\PyTorch_Build\pytorch> python setup.py clean --all Building wheel torch-2.9.0a0+git2d31c3d E:\PyTorch_Build\pytorch\rtx5070_env\lib\site-packages\setuptools\config\_apply_pyprojecttoml.py:82: SetuptoolsDeprecationWarning: `project.license` as a TOML table is deprecated !! ******************************************************************************** Please use a simple string containing a SPDX expression for `project.license`. You can also use `project.license-files`. (Both options available on setuptools>=77.0.0). By 2026-Feb-18, you need to update your project and remove deprecated calls or your builds will no longer be supported. See https://packaging.python.org/en/latest/guides/writing-pyproject-toml/#license for details. ******************************************************************************** !! corresp(dist, value, root_dir) usage: setup.py [global_opts] cmd1 [cmd1_opts] [cmd2 [cmd2_opts] ...] or: setup.py --help [cmd1 cmd2 ...] or: setup.py --help-commands or: setup.py cmd --help error: option --all not recognized (rtx5070_env) PS E:\PyTorch_Build\pytorch> (rtx5070_env) PS E:\PyTorch_Build\pytorch> # 设置编译架构参数 (rtx5070_env) PS E:\PyTorch_Build\pytorch> $env:TORCH_CUDA_ARCH_LIST="8.9;9.0;12.0" (rtx5070_env) PS E:\PyTorch_Build\pytorch> (rtx5070_env) PS E:\PyTorch_Build\pytorch> # 使用正确的编译命令(Windows专用) (rtx5070_env) PS E:\PyTorch_Build\pytorch> python setup.py install ` >> --cmake ` >> --cmake-args="-DCMAKE_CUDA_COMPILER='$env:CUDA_PATH\bin\nvcc.exe' ` >> -DCUDNN_INCLUDE_DIR='$env:CUDNN_INCLUDE_DIR' ` >> -DCUDNN_LIBRARY='$env:CUDNN_LIBRARY' ` >> -DCMAKE_GENERATOR='Ninja' ` >> -DUSE_CUDA=ON ` >> -DUSE_CUDNN=ON" ` >> --verbose ` >> --jobs=$env:MAX_JOBS Building wheel torch-2.9.0a0+git2d31c3d option --cmake-args not recognized (rtx5070_env) PS E:\PyTorch_Build\pytorch> # 使用 PyTorch 官方构建工具 (rtx5070_env) PS E:\PyTorch_Build\pytorch> pip install -U setuptools wheel Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple Requirement already satisfied: setuptools in e:\pytorch_build\pytorch\rtx5070_env\lib\site-packages (80.9.0) Requirement already satisfied: wheel in e:\pytorch_build\pytorch\rtx5070_env\lib\site-packages (0.45.1) (rtx5070_env) PS E:\PyTorch_Build\pytorch> python setup.py bdist_wheel Building wheel torch-2.9.0a0+git2d31c3d -- Building version 2.9.0a0+git2d31c3d E:\PyTorch_Build\pytorch\rtx5070_env\lib\site-packages\setuptools\_distutils\_msvccompiler.py:12: UserWarning: _get_vc_env is private; find an alternative (pypa/distutils#340) warnings.warn( -- Checkout nccl release tag: v2.27.5-1 cmake -GNinja -DBUILD_PYTHON=True -DBUILD_TEST=True -DCMAKE_BUILD_TYPE=Release -DCMAKE_GENERATOR=Ninja -DCMAKE_INSTALL_PREFIX=E:\PyTorch_Build\pytorch\torch -DCMAKE_PREFIX_PATH=E:\PyTorch_Build\pytorch\rtx5070_env\Lib\site-packages -DCUDNN_INCLUDE_DIR=C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.1\include -DCUDNN_LIBRARY=C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.1\lib\x64\cudnn.lib -DPython_EXECUTABLE=E:\PyTorch_Build\pytorch\rtx5070_env\Scripts\python.exe -DPython_NumPy_INCLUDE_DIR=E:\PyTorch_Build\pytorch\rtx5070_env\lib\site-packages\numpy\_core\include -DTORCH_BUILD_VERSION=2.9.0a0+git2d31c3d -DTORCH_CUDA_ARCH_LIST=8.9;9.0;12.0 -DUSE_CUDA=1 -DUSE_CUDNN=1 -DUSE_NUMPY=True E:\PyTorch_Build\pytorch CMake Deprecation Warning at CMakeLists.txt:18 (cmake_policy): The OLD behavior for policy CMP0126 will be removed from a future version of CMake. The cmake-policies(7) manual explains that the OLD behaviors of all policies are deprecated and that a policy should be set to OLD only under specific short-term circumstances. Projects should be ported to the NEW behavior and not rely on setting a policy to OLD. -- The CXX compiler identification is MSVC 19.44.35215.0 -- The C compiler identification is MSVC 19.44.35215.0 -- Detecting CXX compiler ABI info -- Detecting CXX compiler ABI info - done -- Check for working CXX compiler: C:/Program Files (x86)/Microsoft Visual Studio/2022/BuildTools/VC/Tools/MSVC/14.44.35207/bin/Hostx64/x64/cl.exe - skipped -- Detecting CXX compile features -- Detecting CXX compile features - done -- Detecting C compiler ABI info -- Detecting C compiler ABI info - done -- Check for working C compiler: C:/Program Files (x86)/Microsoft Visual Studio/2022/BuildTools/VC/Tools/MSVC/14.44.35207/bin/Hostx64/x64/cl.exe - skipped -- Detecting C compile features -- Detecting C compile features - done -- Not forcing any particular BLAS to be found CMake Warning at CMakeLists.txt:425 (message): TensorPipe cannot be used on Windows. Set it to OFF CMake Warning at CMakeLists.txt:427 (message): KleidiAI cannot be used on Windows. Set it to OFF CMake Warning at CMakeLists.txt:439 (message): Libuv is not installed in current conda env. Set USE_DISTRIBUTED to OFF. Please run command 'conda install -c conda-forge libuv=1.39' to install libuv. -- Performing Test C_HAS_AVX_1 -- Performing Test C_HAS_AVX_1 - Success -- Performing Test C_HAS_AVX2_1 -- Performing Test C_HAS_AVX2_1 - Success -- Performing Test C_HAS_AVX512_1 -- Performing Test C_HAS_AVX512_1 - Success -- Performing Test CXX_HAS_AVX_1 -- Performing Test CXX_HAS_AVX_1 - Success -- Performing Test CXX_HAS_AVX2_1 -- Performing Test CXX_HAS_AVX2_1 - Success -- Performing Test CXX_HAS_AVX512_1 -- Performing Test CXX_HAS_AVX512_1 - Success -- Current compiler supports avx2 extension. Will build perfkernels. -- Performing Test COMPILER_SUPPORTS_HIDDEN_VISIBILITY -- Performing Test COMPILER_SUPPORTS_HIDDEN_VISIBILITY - Failed -- Performing Test COMPILER_SUPPORTS_HIDDEN_INLINE_VISIBILITY -- Performing Test COMPILER_SUPPORTS_HIDDEN_INLINE_VISIBILITY - Failed -- Could not find hardware support for NEON on this machine. -- No OMAP3 processor on this machine. -- No OMAP4 processor on this machine. -- Compiler does not support SVE extension. Will not build perfkernels. CMake Warning at CMakeLists.txt:845 (message): x64 operating system is required for FBGEMM. Not compiling with FBGEMM. Turn this warning off by USE_FBGEMM=OFF. -- Performing Test HAS/UTF_8 -- Performing Test HAS/UTF_8 - Success -- Found CUDA: E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0 (found version "13.0") -- The CUDA compiler identification is NVIDIA 13.0.48 with host compiler MSVC 19.44.35215.0 -- Detecting CUDA compiler ABI info -- Detecting CUDA compiler ABI info - done -- Check for working CUDA compiler: E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0/bin/nvcc.exe - skipped -- Detecting CUDA compile features -- Detecting CUDA compile features - done -- Found CUDAToolkit: E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0/include (found version "13.0.48") -- PyTorch: CUDA detected: 13.0 -- PyTorch: CUDA nvcc is: E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0/bin/nvcc.exe -- PyTorch: CUDA toolkit directory: E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0 -- PyTorch: Header version is: 13.0 -- Found Python: E:\PyTorch_Build\pytorch\rtx5070_env\Scripts\python.exe (found version "3.10.10") found components: Interpreter CMake Warning at cmake/public/cuda.cmake:140 (message): Failed to compute shorthash for libnvrtc.so Call Stack (most recent call first): cmake/Dependencies.cmake:44 (include) CMakeLists.txt:873 (include) -- Could NOT find CUDNN (missing: CUDNN_LIBRARY_PATH CUDNN_INCLUDE_PATH) CMake Warning at cmake/public/cuda.cmake:201 (message): Cannot find cuDNN library. Turning the option off Call Stack (most recent call first): cmake/Dependencies.cmake:44 (include) CMakeLists.txt:873 (include) -- Could NOT find CUSPARSELT (missing: CUSPARSELT_LIBRARY_PATH CUSPARSELT_INCLUDE_PATH) CMake Warning at cmake/public/cuda.cmake:226 (message): Cannot find cuSPARSELt library. Turning the option off Call Stack (most recent call first): cmake/Dependencies.cmake:44 (include) CMakeLists.txt:873 (include) -- Could NOT find CUDSS (missing: CUDSS_LIBRARY_PATH CUDSS_INCLUDE_PATH) CMake Warning at cmake/public/cuda.cmake:242 (message): Cannot find CUDSS library. Turning the option off Call Stack (most recent call first): cmake/Dependencies.cmake:44 (include) CMakeLists.txt:873 (include) -- USE_CUFILE is set to 0. Compiling without cuFile support CMake Warning at cmake/public/cuda.cmake:317 (message): pytorch is not compatible with `CMAKE_CUDA_ARCHITECTURES` and will ignore its value. Please configure `TORCH_CUDA_ARCH_LIST` instead. Call Stack (most recent call first): cmake/Dependencies.cmake:44 (include) CMakeLists.txt:873 (include) -- Added CUDA NVCC flags for: -gencode;arch=compute_89,code=sm_89;-gencode;arch=compute_90,code=sm_90;-gencode;arch=compute_120,code=sm_120 CMake Warning at cmake/Dependencies.cmake:95 (message): Not compiling with XPU. Could NOT find SYCL. Suppress this warning with -DUSE_XPU=OFF. Call Stack (most recent call first): CMakeLists.txt:873 (include) -- Building using own protobuf under third_party per request. -- Use custom protobuf build. CMake Warning at cmake/ProtoBuf.cmake:37 (message): Ancient protobuf forces CMake compatibility Call Stack (most recent call first): cmake/ProtoBuf.cmake:87 (custom_protobuf_find) cmake/Dependencies.cmake:107 (include) CMakeLists.txt:873 (include) CMake Deprecation Warning at third_party/protobuf/cmake/CMakeLists.txt:2 (cmake_minimum_required): Compatibility with CMake < 3.10 will be removed from a future version of CMake. Update the VERSION argument <min> value. Or, use the <min>...<max> syntax to tell CMake that the project requires at least <min> but has been updated to work with policies introduced by <max> or earlier. -- -- 3.13.0.0 -- Performing Test CMAKE_HAVE_LIBC_PTHREAD -- Performing Test CMAKE_HAVE_LIBC_PTHREAD - Failed -- Looking for pthread_create in pthreads -- Looking for pthread_create in pthreads - not found -- Looking for pthread_create in pthread -- Looking for pthread_create in pthread - not found -- Found Threads: TRUE -- Caffe2 protobuf include directory: $<BUILD_INTERFACE:E:/PyTorch_Build/pytorch/third_party/protobuf/src>$<INSTALL_INTERFACE:include> -- Trying to find preferred BLAS backend of choice: MKL -- MKL_THREADING = OMP -- Looking for sys/types.h -- Looking for sys/types.h - found -- Looking for stdint.h -- Looking for stdint.h - found -- Looking for stddef.h -- Looking for stddef.h - found -- Check size of void* -- Check size of void* - done -- MKL_THREADING = OMP CMake Warning at cmake/Dependencies.cmake:213 (message): MKL could not be found. Defaulting to Eigen Call Stack (most recent call first): CMakeLists.txt:873 (include) CMake Warning at cmake/Dependencies.cmake:279 (message): Preferred BLAS (MKL) cannot be found, now searching for a general BLAS library Call Stack (most recent call first): CMakeLists.txt:873 (include) -- MKL_THREADING = OMP -- Checking for [mkl_intel_lp64 - mkl_intel_thread - mkl_core - libiomp5md] -- Library mkl_intel_lp64: not found -- Checking for [mkl_intel - mkl_intel_thread - mkl_core - libiomp5md] -- Library mkl_intel: not found -- Checking for [mkl_intel_lp64 - mkl_intel_thread - mkl_core] -- Library mkl_intel_lp64: not found -- Checking for [mkl_intel - mkl_intel_thread - mkl_core] -- Library mkl_intel: not found -- Checking for [mkl_intel_lp64 - mkl_sequential - mkl_core] -- Library mkl_intel_lp64: not found -- Checking for [mkl_intel - mkl_sequential - mkl_core] -- Library mkl_intel: not found -- Checking for [mkl_intel_lp64 - mkl_core - libiomp5md - pthread] -- Library mkl_intel_lp64: not found -- Checking for [mkl_intel - mkl_core - libiomp5md - pthread] -- Library mkl_intel: not found -- Checking for [mkl_intel_lp64 - mkl_core - pthread] -- Library mkl_intel_lp64: not found -- Checking for [mkl_intel - mkl_core - pthread] -- Library mkl_intel: not found -- Checking for [mkl - guide - pthread - m] -- Library mkl: not found -- MKL library not found -- Checking for [blis] -- Library blis: BLAS_blis_LIBRARY-NOTFOUND -- Checking for [Accelerate] -- Library Accelerate: BLAS_Accelerate_LIBRARY-NOTFOUND -- Checking for [vecLib] -- Library vecLib: BLAS_vecLib_LIBRARY-NOTFOUND -- Checking for [flexiblas] -- Library flexiblas: BLAS_flexiblas_LIBRARY-NOTFOUND -- Checking for [openblas] -- Library openblas: BLAS_openblas_LIBRARY-NOTFOUND -- Checking for [openblas - pthread - m] -- Library openblas: BLAS_openblas_LIBRARY-NOTFOUND -- Checking for [openblas - pthread - m - gomp] -- Library openblas: BLAS_openblas_LIBRARY-NOTFOUND -- Checking for [libopenblas] -- Library libopenblas: BLAS_libopenblas_LIBRARY-NOTFOUND -- Checking for [goto2 - gfortran] -- Library goto2: BLAS_goto2_LIBRARY-NOTFOUND -- Checking for [goto2 - gfortran - pthread] -- Library goto2: BLAS_goto2_LIBRARY-NOTFOUND -- Checking for [acml - gfortran] -- Library acml: BLAS_acml_LIBRARY-NOTFOUND -- Checking for [blis] -- Library blis: BLAS_blis_LIBRARY-NOTFOUND -- Could NOT find Atlas (missing: Atlas_CBLAS_INCLUDE_DIR Atlas_CLAPACK_INCLUDE_DIR Atlas_CBLAS_LIBRARY Atlas_BLAS_LIBRARY Atlas_LAPACK_LIBRARY) -- Checking for [ptf77blas - atlas - gfortran] -- Library ptf77blas: BLAS_ptf77blas_LIBRARY-NOTFOUND -- Checking for [] -- Looking for sgemm_ -- Looking for sgemm_ - not found -- Cannot find a library with BLAS API. Not using BLAS. -- Using pocketfft in directory: E:/PyTorch_Build/pytorch/third_party/pocketfft/ CMake Deprecation Warning at third_party/pthreadpool/CMakeLists.txt:1 (CMAKE_MINIMUM_REQUIRED): Compatibility with CMake < 3.10 will be removed from a future version of CMake. Update the VERSION argument <min> value. Or, use the <min>...<max> syntax to tell CMake that the project requires at least <min> but has been updated to work with policies introduced by <max> or earlier. CMake Deprecation Warning at third_party/FXdiv/CMakeLists.txt:1 (CMAKE_MINIMUM_REQUIRED): Compatibility with CMake < 3.10 will be removed from a future version of CMake. Update the VERSION argument <min> value. Or, use the <min>...<max> syntax to tell CMake that the project requires at least <min> but has been updated to work with policies introduced by <max> or earlier. CMake Deprecation Warning at third_party/cpuinfo/CMakeLists.txt:1 (CMAKE_MINIMUM_REQUIRED): Compatibility with CMake < 3.10 will be removed from a future version of CMake. Update the VERSION argument <min> value. Or, use the <min>...<max> syntax to tell CMake that the project requires at least <min> but has been updated to work with policies introduced by <max> or earlier. -- The ASM compiler identification is MSVC CMake Warning (dev) at rtx5070_env/Lib/site-packages/cmake/data/share/cmake-4.1/Modules/CMakeDetermineASMCompiler.cmake:234 (message): Policy CMP194 is not set: MSVC is not an assembler for language ASM. Run "cmake --help-policy CMP194" for policy details. Use the cmake_policy command to set the policy and suppress this warning. Call Stack (most recent call first): third_party/XNNPACK/CMakeLists.txt:18 (PROJECT) This warning is for project developers. Use -Wno-dev to suppress it. -- Found assembler: C:/Program Files (x86)/Microsoft Visual Studio/2022/BuildTools/VC/Tools/MSVC/14.44.35207/bin/Hostx64/x64/cl.exe -- Building for XNNPACK_TARGET_PROCESSOR: x86_64 -- Generating microkernels.cmake Duplicate microkernel definition: src\qs8-qc4w-packw\gen\qs8-qc4w-packw-x8c8-gemm-goi-avx256vnni.c and src\qs8-qc4w-packw\gen\qs8-qc4w-packw-x8c8-gemm-goi-avxvnni.c (1th function) Duplicate microkernel definition: src\qs8-qc4w-packw\gen\qs8-qc4w-packw-x8c8-gemm-goi-avxvnni.c and src\qs8-qc4w-packw\gen\qs8-qc4w-packw-x8c8-gemm-goi-scalar.c No microkernel found in src\reference\binary-elementwise.cc No microkernel found in src\reference\packing.cc No microkernel found in src\reference\unary-elementwise.cc -- Found Git: E:/Program Files/Git/cmd/git.exe (found version "2.51.0.windows.1") -- Google Benchmark version: v1.9.3, normalized to 1.9.3 -- Looking for shm_open in rt -- Looking for shm_open in rt - not found -- Performing Test HAVE_CXX_FLAG_WX -- Performing Test HAVE_CXX_FLAG_WX - Success -- Compiling and running to test HAVE_STD_REGEX -- Performing Test HAVE_STD_REGEX -- success -- Compiling and running to test HAVE_GNU_POSIX_REGEX -- Performing Test HAVE_GNU_POSIX_REGEX -- failed to compile -- Compiling and running to test HAVE_POSIX_REGEX -- Performing Test HAVE_POSIX_REGEX -- failed to compile -- Compiling and running to test HAVE_STEADY_CLOCK -- Performing Test HAVE_STEADY_CLOCK -- success -- Compiling and running to test HAVE_PTHREAD_AFFINITY -- Performing Test HAVE_PTHREAD_AFFINITY -- failed to compile CMake Deprecation Warning at third_party/ittapi/CMakeLists.txt:7 (cmake_minimum_required): Compatibility with CMake < 3.10 will be removed from a future version of CMake. Update the VERSION argument <min> value. Or, use the <min>...<max> syntax to tell CMake that the project requires at least <min> but has been updated to work with policies introduced by <max> or earlier. CMake Warning at cmake/Dependencies.cmake:749 (message): FP16 is only cmake-2.8 compatible Call Stack (most recent call first): CMakeLists.txt:873 (include) CMake Deprecation Warning at third_party/FP16/CMakeLists.txt:1 (CMAKE_MINIMUM_REQUIRED): Compatibility with CMake < 3.10 will be removed from a future version of CMake. Update the VERSION argument <min> value. Or, use the <min>...<max> syntax to tell CMake that the project requires at least <min> but has been updated to work with policies introduced by <max> or earlier. CMake Deprecation Warning at third_party/psimd/CMakeLists.txt:1 (CMAKE_MINIMUM_REQUIRED): Compatibility with CMake < 3.10 will be removed from a future version of CMake. Update the VERSION argument <min> value. Or, use the <min>...<max> syntax to tell CMake that the project requires at least <min> but has been updated to work with policies introduced by <max> or earlier. -- Using third party subdirectory Eigen. -- Found Python: E:\PyTorch_Build\pytorch\rtx5070_env\Scripts\python.exe (found version "3.10.10") found components: Interpreter Development.Module NumPy -- Using third_party/pybind11. -- pybind11 include dirs: E:/PyTorch_Build/pytorch/cmake/../third_party/pybind11/include -- Could NOT find OpenTelemetryApi (missing: OpenTelemetryApi_INCLUDE_DIRS) -- Using third_party/opentelemetry-cpp. -- opentelemetry api include dirs: E:/PyTorch_Build/pytorch/cmake/../third_party/opentelemetry-cpp/api/include -- Could NOT find MPI_C (missing: MPI_C_LIB_NAMES MPI_C_HEADER_DIR MPI_C_WORKS) -- Could NOT find MPI_CXX (missing: MPI_CXX_LIB_NAMES MPI_CXX_HEADER_DIR MPI_CXX_WORKS) -- Could NOT find MPI (missing: MPI_C_FOUND MPI_CXX_FOUND) CMake Warning at cmake/Dependencies.cmake:894 (message): Not compiling with MPI. Suppress this warning with -DUSE_MPI=OFF Call Stack (most recent call first): CMakeLists.txt:873 (include) -- MKL_THREADING = OMP -- Check OMP with lib C:/Program Files (x86)/Microsoft Visual Studio/2022/BuildTools/VC/Tools/MSVC/14.44.35207/lib/x64/libomp.lib and flags -openmp:experimental -- MKL_THREADING = OMP -- Check OMP with lib C:/Program Files (x86)/Microsoft Visual Studio/2022/BuildTools/VC/Tools/MSVC/14.44.35207/lib/x64/libomp.lib and flags -openmp:experimental -- Found OpenMP_C: -openmp:experimental -- Found OpenMP_CXX: -openmp:experimental -- Found OpenMP: TRUE -- Adding OpenMP CXX_FLAGS: -openmp:experimental -- Will link against OpenMP libraries: C:/Program Files (x86)/Microsoft Visual Studio/2022/BuildTools/VC/Tools/MSVC/14.44.35207/lib/x64/libomp.lib -- Found nvtx3: E:/PyTorch_Build/pytorch/third_party/NVTX/c/include -- ROCM_PATH environment variable is not set and C:/opt/rocm does not exist. Building without ROCm support. -- Found Python3: E:\PyTorch_Build\pytorch\rtx5070_env\Scripts\python.exe (found version "3.10.10") found components: Interpreter -- ONNX_PROTOC_EXECUTABLE: $<TARGET_FILE:protobuf::protoc> -- Protobuf_VERSION: Protobuf_VERSION_NOTFOUND Generated: E:/PyTorch_Build/pytorch/build/third_party/onnx/onnx/onnx_onnx_torch-ml.proto Generated: E:/PyTorch_Build/pytorch/build/third_party/onnx/onnx/onnx-operators_onnx_torch-ml.proto Generated: E:/PyTorch_Build/pytorch/build/third_party/onnx/onnx/onnx-data_onnx_torch.proto -- -- ******** Summary ******** -- CMake version : 4.1.0 -- CMake command : E:/PyTorch_Build/pytorch/rtx5070_env/Lib/site-packages/cmake/data/bin/cmake.exe -- System : Windows -- C++ compiler : C:/Program Files (x86)/Microsoft Visual Studio/2022/BuildTools/VC/Tools/MSVC/14.44.35207/bin/Hostx64/x64/cl.exe -- C++ compiler version : 19.44.35215.0 -- CXX flags : /DWIN32 /D_WINDOWS /EHsc /Zc:__cplusplus /bigobj /FS /utf-8 -DUSE_PTHREADPOOL /EHsc /wd26812 -- Build type : Release -- Compile definitions : ONNX_ML=1;ONNXIFI_ENABLE_EXT=1 -- CMAKE_PREFIX_PATH : E:\PyTorch_Build\pytorch\rtx5070_env\Lib\site-packages;E:/Program Files/NVIDIA/CUNND/v9.12;E:\Program Files\NVIDIA\CUNND\v9.12;E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0;E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0;E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0 -- CMAKE_INSTALL_PREFIX : E:/PyTorch_Build/pytorch/torch -- CMAKE_MODULE_PATH : E:/PyTorch_Build/pytorch/cmake/Modules;E:/PyTorch_Build/pytorch/cmake/public/../Modules_CUDA_fix -- -- ONNX version : 1.18.0 -- ONNX NAMESPACE : onnx_torch -- ONNX_USE_LITE_PROTO : OFF -- USE_PROTOBUF_SHARED_LIBS : OFF -- ONNX_DISABLE_EXCEPTIONS : OFF -- ONNX_DISABLE_STATIC_REGISTRATION : OFF -- ONNX_WERROR : OFF -- ONNX_BUILD_TESTS : OFF -- BUILD_SHARED_LIBS : OFF -- -- Protobuf compiler : $<TARGET_FILE:protobuf::protoc> -- Protobuf includes : -- Protobuf libraries : -- ONNX_BUILD_PYTHON : OFF -- Found CUDA with FP16 support, compiling with torch.cuda.HalfTensor -- Adding -DNDEBUG to compile flags -- Checking prototype magma_get_sgeqrf_nb for MAGMA_V2 -- Checking prototype magma_get_sgeqrf_nb for MAGMA_V2 - False -- MAGMA not found. Compiling without MAGMA support -- Could not find hardware support for NEON on this machine. -- No OMAP3 processor on this machine. -- No OMAP4 processor on this machine. -- MKL_THREADING = OMP -- Checking for [mkl_intel_lp64 - mkl_intel_thread - mkl_core - libiomp5md] -- Library mkl_intel_lp64: not found -- Checking for [mkl_intel - mkl_intel_thread - mkl_core - libiomp5md] -- Library mkl_intel: not found -- Checking for [mkl_intel_lp64 - mkl_intel_thread - mkl_core] -- Library mkl_intel_lp64: not found -- Checking for [mkl_intel - mkl_intel_thread - mkl_core] -- Library mkl_intel: not found -- Checking for [mkl_intel_lp64 - mkl_sequential - mkl_core] -- Library mkl_intel_lp64: not found -- Checking for [mkl_intel - mkl_sequential - mkl_core] -- Library mkl_intel: not found -- Checking for [mkl_intel_lp64 - mkl_core - libiomp5md - pthread] -- Library mkl_intel_lp64: not found -- Checking for [mkl_intel - mkl_core - libiomp5md - pthread] -- Library mkl_intel: not found -- Checking for [mkl_intel_lp64 - mkl_core - pthread] -- Library mkl_intel_lp64: not found -- Checking for [mkl_intel - mkl_core - pthread] -- Library mkl_intel: not found -- Checking for [mkl - guide - pthread - m] -- Library mkl: not found -- MKL library not found -- Checking for [blis] -- Library blis: BLAS_blis_LIBRARY-NOTFOUND -- Checking for [Accelerate] -- Library Accelerate: BLAS_Accelerate_LIBRARY-NOTFOUND -- Checking for [vecLib] -- Library vecLib: BLAS_vecLib_LIBRARY-NOTFOUND -- Checking for [flexiblas] -- Library flexiblas: BLAS_flexiblas_LIBRARY-NOTFOUND -- Checking for [openblas] -- Library openblas: BLAS_openblas_LIBRARY-NOTFOUND -- Checking for [openblas - pthread - m] -- Library openblas: BLAS_openblas_LIBRARY-NOTFOUND -- Checking for [openblas - pthread - m - gomp] -- Library openblas: BLAS_openblas_LIBRARY-NOTFOUND -- Checking for [libopenblas] -- Library libopenblas: BLAS_libopenblas_LIBRARY-NOTFOUND -- Checking for [goto2 - gfortran] -- Library goto2: BLAS_goto2_LIBRARY-NOTFOUND -- Checking for [goto2 - gfortran - pthread] -- Library goto2: BLAS_goto2_LIBRARY-NOTFOUND -- Checking for [acml - gfortran] -- Library acml: BLAS_acml_LIBRARY-NOTFOUND -- Checking for [blis] -- Library blis: BLAS_blis_LIBRARY-NOTFOUND -- Could NOT find Atlas (missing: Atlas_CBLAS_INCLUDE_DIR Atlas_CLAPACK_INCLUDE_DIR Atlas_CBLAS_LIBRARY Atlas_BLAS_LIBRARY Atlas_LAPACK_LIBRARY) -- Checking for [ptf77blas - atlas - gfortran] -- Library ptf77blas: BLAS_ptf77blas_LIBRARY-NOTFOUND -- Checking for [] -- Cannot find a library with BLAS API. Not using BLAS. -- LAPACK requires BLAS -- Cannot find a library with LAPACK API. Not using LAPACK. disabling ROCM because NOT USE_ROCM is set -- MIOpen not found. Compiling without MIOpen support disabling MKLDNN because USE_MKLDNN is not set -- {fmt} version: 11.2.0 -- Build type: Release -- Using Kineto with CUPTI support -- Configuring Kineto dependency: -- KINETO_SOURCE_DIR = E:/PyTorch_Build/pytorch/third_party/kineto/libkineto -- KINETO_BUILD_TESTS = OFF -- KINETO_LIBRARY_TYPE = static -- CUDA_SOURCE_DIR = E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0 -- CUDA_INCLUDE_DIRS = E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0/include -- CUPTI_INCLUDE_DIR = E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0/extras/CUPTI/include -- CUDA_cupti_LIBRARY = E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0/extras/CUPTI/lib64/cupti.lib -- Found CUPTI CMake Deprecation Warning at third_party/kineto/libkineto/CMakeLists.txt:7 (cmake_minimum_required): Compatibility with CMake < 3.10 will be removed from a future version of CMake. Update the VERSION argument <min> value. Or, use the <min>...<max> syntax to tell CMake that the project requires at least <min> but has been updated to work with policies introduced by <max> or earlier. CMake Warning (dev) at third_party/kineto/libkineto/CMakeLists.txt:15 (find_package): Policy CMP0148 is not set: The FindPythonInterp and FindPythonLibs modules are removed. Run "cmake --help-policy CMP0148" for policy details. Use the cmake_policy command to set the policy and suppress this warning. This warning is for project developers. Use -Wno-dev to suppress it. -- Found PythonInterp: E:/PyTorch_Build/pytorch/rtx5070_env/Scripts/python.exe (found version "3.10.10") -- ROCM_SOURCE_DIR = -- Kineto: FMT_SOURCE_DIR = E:/PyTorch_Build/pytorch/third_party/fmt -- Kineto: FMT_INCLUDE_DIR = E:/PyTorch_Build/pytorch/third_party/fmt/include -- CUPTI_INCLUDE_DIR = E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0/extras/CUPTI/include -- ROCTRACER_INCLUDE_DIR = /include/roctracer -- DYNOLOG_INCLUDE_DIR = E:/PyTorch_Build/pytorch/third_party/kineto/libkineto/third_party/dynolog/ -- IPCFABRIC_INCLUDE_DIR = E:/PyTorch_Build/pytorch/third_party/kineto/libkineto/third_party/dynolog//dynolog/src/ipcfabric/ -- Configured Kineto -- Performing Test HAS/WD4624 -- Performing Test HAS/WD4624 - Success -- Performing Test HAS/WD4068 -- Performing Test HAS/WD4068 - Success -- Performing Test HAS/WD4067 -- Performing Test HAS/WD4067 - Success -- Performing Test HAS/WD4267 -- Performing Test HAS/WD4267 - Success -- Performing Test HAS/WD4661 -- Performing Test HAS/WD4661 - Success -- Performing Test HAS/WD4717 -- Performing Test HAS/WD4717 - Success -- Performing Test HAS/WD4244 -- Performing Test HAS/WD4244 - Success -- Performing Test HAS/WD4804 -- Performing Test HAS/WD4804 - Success -- Performing Test HAS/WD4273 -- Performing Test HAS/WD4273 - Success -- Performing Test HAS_WNO_STRINGOP_OVERFLOW -- Performing Test HAS_WNO_STRINGOP_OVERFLOW - Failed -- -- Architecture: x64 -- Use the C++ compiler to compile (MI_USE_CXX=ON) -- -- Library name : mimalloc -- Version : 2.2.4 -- Build type : release -- C++ Compiler : C:/Program Files (x86)/Microsoft Visual Studio/2022/BuildTools/VC/Tools/MSVC/14.44.35207/bin/Hostx64/x64/cl.exe -- Compiler flags : /Zc:__cplusplus -- Compiler defines : MI_CMAKE_BUILD_TYPE=release;MI_BUILD_RELEASE -- Link libraries : psapi;shell32;user32;advapi32;bcrypt -- Build targets : static -- CMake Error at CMakeLists.txt:1264 (add_subdirectory): The source directory E:/PyTorch_Build/pytorch/torch/headeronly does not contain a CMakeLists.txt file. -- don't use NUMA -- Looking for backtrace -- Looking for backtrace - not found -- Could NOT find Backtrace (missing: Backtrace_LIBRARY Backtrace_INCLUDE_DIR) -- headers outputs: torch\csrc\inductor\aoti_torch\generated\c_shim_cpu.h not found torch\csrc\inductor\aoti_torch\generated\c_shim_cuda.h not found torch\csrc\inductor\aoti_torch\generated\c_shim_aten.h not found -- sources outputs: -- declarations_yaml outputs: -- Performing Test COMPILER_SUPPORTS_NO_AVX256_SPLIT -- Performing Test COMPILER_SUPPORTS_NO_AVX256_SPLIT - Failed -- Using ATen parallel backend: OMP -- Could NOT find OpenSSL, try to set the path to OpenSSL root folder in the system variable OPENSSL_ROOT_DIR (missing: OPENSSL_CRYPTO_LIBRARY OPENSSL_INCLUDE_DIR) -- Check size of long double -- Check size of long double - done -- Performing Test COMPILER_SUPPORTS_FLOAT128 -- Performing Test COMPILER_SUPPORTS_FLOAT128 - Failed -- Performing Test COMPILER_SUPPORTS_SSE2 -- Performing Test COMPILER_SUPPORTS_SSE2 - Success -- Performing Test COMPILER_SUPPORTS_SSE4 -- Performing Test COMPILER_SUPPORTS_SSE4 - Success -- Performing Test COMPILER_SUPPORTS_AVX -- Performing Test COMPILER_SUPPORTS_AVX - Success -- Performing Test COMPILER_SUPPORTS_FMA4 -- Performing Test COMPILER_SUPPORTS_FMA4 - Success -- Performing Test COMPILER_SUPPORTS_AVX2 -- Performing Test COMPILER_SUPPORTS_AVX2 - Success -- Performing Test COMPILER_SUPPORTS_AVX512F -- Performing Test COMPILER_SUPPORTS_AVX512F - Success -- Found OpenMP_C: -openmp:experimental (found version "2.0") -- Found OpenMP_CXX: -openmp:experimental (found version "2.0") -- Found OpenMP_CUDA: -openmp (found version "2.0") -- Found OpenMP: TRUE (found version "2.0") -- Performing Test COMPILER_SUPPORTS_OPENMP -- Performing Test COMPILER_SUPPORTS_OPENMP - Success -- Performing Test COMPILER_SUPPORTS_OMP_SIMD -- Performing Test COMPILER_SUPPORTS_OMP_SIMD - Failed -- Performing Test COMPILER_SUPPORTS_WEAK_ALIASES -- Performing Test COMPILER_SUPPORTS_WEAK_ALIASES - Failed -- Performing Test COMPILER_SUPPORTS_BUILTIN_MATH -- Performing Test COMPILER_SUPPORTS_BUILTIN_MATH - Failed -- Performing Test COMPILER_SUPPORTS_SYS_GETRANDOM -- Performing Test COMPILER_SUPPORTS_SYS_GETRANDOM - Failed -- Configuring build for SLEEF-v3.8.0 Target system: Windows-10.0.26100 Target processor: AMD64 Host system: Windows-10.0.26100 Host processor: AMD64 Detected C compiler: MSVC @ C:/Program Files (x86)/Microsoft Visual Studio/2022/BuildTools/VC/Tools/MSVC/14.44.35207/bin/Hostx64/x64/cl.exe CMake: 4.1.0 Make program: E:/PyTorch_Build/pytorch/rtx5070_env/Scripts/ninja.exe -- Using option `/D_CRT_SECURE_NO_WARNINGS /D_CRT_NONSTDC_NO_DEPRECATE ` to compile libsleef -- Building shared libs : OFF -- Building static test bins: OFF -- MPFR : LIB_MPFR-NOTFOUND -- GMP : LIBGMP-NOTFOUND -- RT : -- FFTW3 : LIBFFTW3-NOTFOUND -- OPENSSL : -- SDE : SDE_COMMAND-NOTFOUND -- COMPILER_SUPPORTS_OPENMP : FALSE AT_INSTALL_INCLUDE_DIR include/ATen/core core header install: E:/PyTorch_Build/pytorch/build/aten/src/ATen/core/aten_interned_strings.h core header install: E:/PyTorch_Build/pytorch/build/aten/src/ATen/core/enum_tag.h core header install: E:/PyTorch_Build/pytorch/build/aten/src/ATen/core/TensorBody.h -- NVSHMEM not found, not building with NVSHMEM support. CMake Error at torch/CMakeLists.txt:3 (add_subdirectory): The source directory E:/PyTorch_Build/pytorch/torch/csrc does not contain a CMakeLists.txt file. CMake Warning at CMakeLists.txt:1285 (message): Generated cmake files are only fully tested if one builds with system glog, gflags, and protobuf. Other settings may generate files that are not well tested. -- -- ******** Summary ******** -- General: -- CMake version : 4.1.0 -- CMake command : E:/PyTorch_Build/pytorch/rtx5070_env/Lib/site-packages/cmake/data/bin/cmake.exe -- System : Windows -- C++ compiler : C:/Program Files (x86)/Microsoft Visual Studio/2022/BuildTools/VC/Tools/MSVC/14.44.35207/bin/Hostx64/x64/cl.exe -- C++ compiler id : MSVC -- C++ compiler version : 19.44.35215.0 -- Using ccache if found : OFF -- CXX flags : /DWIN32 /D_WINDOWS /EHsc /Zc:__cplusplus /bigobj /FS /utf-8 -DUSE_PTHREADPOOL -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOROCTRACER -DLIBKINETO_NOXPUPTI=ON -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE /wd4624 /wd4068 /wd4067 /wd4267 /wd4661 /wd4717 /wd4244 /wd4804 /wd4273 -- Shared LD flags : /machine:x64 /ignore:4049 /ignore:4217 /ignore:4099 -- Static LD flags : /machine:x64 /ignore:4049 /ignore:4217 /ignore:4099 -- Module LD flags : /machine:x64 /ignore:4049 /ignore:4217 /ignore:4099 -- Build type : Release -- Compile definitions : ONNX_ML=1;ONNXIFI_ENABLE_EXT=1;ONNX_NAMESPACE=onnx_torch;_CRT_SECURE_NO_DEPRECATE=1;USE_EXTERNAL_MZCRC;MINIZ_DISABLE_ZIP_READER_CRC32_CHECKS;EXPORT_AOTI_FUNCTIONS;WIN32_LEAN_AND_MEAN;_UCRT_LEGACY_INFINITY;NOMINMAX;USE_MIMALLOC -- CMAKE_PREFIX_PATH : E:\PyTorch_Build\pytorch\rtx5070_env\Lib\site-packages;E:/Program Files/NVIDIA/CUNND/v9.12;E:\Program Files\NVIDIA\CUNND\v9.12;E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0;E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0;E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0 -- CMAKE_INSTALL_PREFIX : E:/PyTorch_Build/pytorch/torch -- USE_GOLD_LINKER : OFF -- -- TORCH_VERSION : 2.9.0 -- BUILD_STATIC_RUNTIME_BENCHMARK: OFF -- BUILD_BINARY : OFF -- BUILD_CUSTOM_PROTOBUF : ON -- Link local protobuf : ON -- BUILD_PYTHON : True -- Python version : 3.10.10 -- Python executable : E:\PyTorch_Build\pytorch\rtx5070_env\Scripts\python.exe -- Python library : E:/Python310/libs/python310.lib -- Python includes : E:/Python310/Include -- Python site-package : E:\PyTorch_Build\pytorch\rtx5070_env\Lib\site-packages -- BUILD_SHARED_LIBS : ON -- CAFFE2_USE_MSVC_STATIC_RUNTIME : OFF -- BUILD_TEST : True -- BUILD_JNI : OFF -- BUILD_MOBILE_AUTOGRAD : OFF -- BUILD_LITE_INTERPRETER: OFF -- INTERN_BUILD_MOBILE : -- TRACING_BASED : OFF -- USE_BLAS : 0 -- USE_LAPACK : 0 -- USE_ASAN : OFF -- USE_TSAN : OFF -- USE_CPP_CODE_COVERAGE : OFF -- USE_CUDA : 1 -- CUDA static link : OFF -- USE_CUDNN : OFF -- USE_CUSPARSELT : OFF -- USE_CUDSS : OFF -- USE_CUFILE : OFF -- CUDA version : 13.0 -- USE_FLASH_ATTENTION : OFF -- USE_MEM_EFF_ATTENTION : ON -- CUDA root directory : E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0 -- CUDA library : E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0/lib/x64/cuda.lib -- cudart library : E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0/lib/x64/cudart.lib -- cublas library : E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0/lib/x64/cublas.lib -- cufft library : E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0/lib/x64/cufft.lib -- curand library : E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0/lib/x64/curand.lib -- cusparse library : E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0/lib/x64/cusparse.lib -- nvrtc : E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0/lib/x64/nvrtc.lib -- CUDA include path : E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0/include -- NVCC executable : E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0/bin/nvcc.exe -- CUDA compiler : E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0/bin/nvcc.exe -- CUDA flags : -DLIBCUDACXX_ENABLE_SIMPLIFIED_COMPLEX_OPERATIONS -Xcompiler /Zc:__cplusplus -Xcompiler /w -w -Xcompiler /FS -Xfatbin -compress-all -DONNX_NAMESPACE=onnx_torch --use-local-env -gencode arch=compute_89,code=sm_89 -gencode arch=compute_90,code=sm_90 -gencode arch=compute_120,code=sm_120 -Xcudafe --diag_suppress=cc_clobber_ignored,--diag_suppress=field_without_dll_interface,--diag_suppress=base_class_has_different_dll_interface,--diag_suppress=dll_interface_conflict_none_assumed,--diag_suppress=dll_interface_conflict_dllexport_assumed,--diag_suppress=bad_friend_decl --Werror cross-execution-space-call --no-host-device-move-forward --expt-relaxed-constexpr --expt-extended-lambda -Xcompiler=/wd4819,/wd4503,/wd4190,/wd4244,/wd4251,/wd4275,/wd4522 -Wno-deprecated-gpu-targets --expt-extended-lambda -DCUB_WRAPPED_NAMESPACE=at_cuda_detail -DCUDA_HAS_FP16=1 -D__CUDA_NO_HALF_OPERATORS__ -D__CUDA_NO_HALF_CONVERSIONS__ -D__CUDA_NO_HALF2_OPERATORS__ -D__CUDA_NO_BFLOAT16_CONVERSIONS__ -- CUDA host compiler : -- CUDA --device-c : OFF -- USE_TENSORRT : -- USE_XPU : OFF -- USE_ROCM : OFF -- BUILD_NVFUSER : -- USE_EIGEN_FOR_BLAS : ON -- USE_EIGEN_FOR_SPARSE : OFF -- USE_FBGEMM : OFF -- USE_KINETO : ON -- USE_GFLAGS : OFF -- USE_GLOG : OFF -- USE_LITE_PROTO : OFF -- USE_PYTORCH_METAL : OFF -- USE_PYTORCH_METAL_EXPORT : OFF -- USE_MPS : OFF -- CAN_COMPILE_METAL : -- USE_MKL : OFF -- USE_MKLDNN : OFF -- USE_UCC : OFF -- USE_ITT : ON -- USE_XCCL : OFF -- USE_NCCL : OFF -- Found NVSHMEM : -- USE_NNPACK : OFF -- USE_NUMPY : ON -- USE_OBSERVERS : ON -- USE_OPENCL : OFF -- USE_OPENMP : ON -- USE_MIMALLOC : ON -- USE_MIMALLOC_ON_MKL : OFF -- USE_VULKAN : OFF -- USE_PROF : OFF -- USE_PYTORCH_QNNPACK : OFF -- USE_XNNPACK : ON -- USE_DISTRIBUTED : OFF -- Public Dependencies : -- Private Dependencies : Threads::Threads;pthreadpool;cpuinfo;XNNPACK;microkernels-prod;ittnotify;fp16;caffe2::openmp;fmt::fmt-header-only;kineto -- Public CUDA Deps. : -- Private CUDA Deps. : caffe2::curand;caffe2::cufft;caffe2::cublas;fmt::fmt-header-only;E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0/lib/x64/cudart_static.lib;CUDA::cusparse;CUDA::cufft;CUDA::cusolver;ATEN_CUDA_FILES_GEN_LIB -- USE_COREML_DELEGATE : OFF -- BUILD_LAZY_TS_BACKEND : ON -- USE_ROCM_KERNEL_ASSERT : OFF -- Performing Test HAS_WMISSING_PROTOTYPES -- Performing Test HAS_WMISSING_PROTOTYPES - Failed -- Performing Test HAS_WERROR_MISSING_PROTOTYPES -- Performing Test HAS_WERROR_MISSING_PROTOTYPES - Failed -- Configuring incomplete, errors occurred! (rtx5070_env) PS E:\PyTorch_Build\pytorch> (rtx5070_env) PS E:\PyTorch_Build\pytorch> # 安装生成的包 (rtx5070_env) PS E:\PyTorch_Build\pytorch> $wheelPath = Get-ChildItem dist\*.whl | Select-Object -First 1 Get-ChildItem: Cannot find path 'E:\PyTorch_Build\pytorch\dist' because it does not exist. (rtx5070_env) PS E:\PyTorch_Build\pytorch> pip install $wheelPath --force-reinstall --no-deps ERROR: You must give at least one requirement to install (see "pip help install") (rtx5070_env) PS E:\PyTorch_Build\pytorch> python diagnostic_test.py ================================================== CUDA Toolkit 验证: ✅ NVCC 版本: nvcc: NVIDIA (R) Cuda compiler driver Copyright (c) 2005-2025 NVIDIA Corporation Built on Wed_Jul_16_20:06:48_Pacific_Daylight_Time_2025 Cuda compilation tools, release 13.0, V13.0.48 Build cuda_13.0.r13.0/compiler.36260728_0 ✅ NVIDIA-SMI 输出: Mon Sep 1 20:54:10 2025 +-----------------------------------------------------------------------------------------+ | NVIDIA-SMI 580.97 Driver Version: 580.97 CUDA Version: 13.0 | +-----------------------------------------+------------------------+----------------------+ | GPU Name Driver-Model | Bus-Id Disp.A | Volatile Uncorr. ECC | | Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. | | | | MIG M. | |=========================================+========================+======================| | 0 NVIDIA GeForce RTX 5070 WDDM | 00000000:01:00.0 On | N/A | | 0% 35C P3 16W / 250W | 1328MiB / 12227MiB | 0% Default | | | | N/A | +-----------------------------------------+------------------------+----------------------+ +-----------------------------------------------------------------------------------------+ | Processes: | | GPU GI CI PID Type Process name GPU Memory | | ID ID Usage | |=========================================================================================| | 0 N/A N/A 1124 C+G ...yb3d8bbwe\WindowsTerminal.exe N/A | | 0 N/A N/A 1288 C+G ...les\Tencent\Weixin\Weixin.exe N/A | | 0 N/A N/A 1776 C+G C:\Windows\System32\dwm.exe N/A | | 0 N/A N/A 2272 C+G ...t\Edge\Application\msedge.exe N/A | | 0 N/A N/A 3268 C+G ...em32\ApplicationFrameHost.exe N/A | | 0 N/A N/A 7860 C+G C:\Windows\explorer.exe N/A | | 0 N/A N/A 8004 C+G ...indows\System32\ShellHost.exe N/A | | 0 N/A N/A 8156 C+G ...0.3405.125\msedgewebview2.exe N/A | | 0 N/A N/A 8852 C+G ..._cw5n1h2txyewy\SearchHost.exe N/A | | 0 N/A N/A 8876 C+G ...y\StartMenuExperienceHost.exe N/A | | 0 N/A N/A 10540 C+G ...0.3405.125\msedgewebview2.exe N/A | | 0 N/A N/A 12380 C+G ...5n1h2txyewy\TextInputHost.exe N/A | | 0 N/A N/A 15340 C+G ...acted\runtime\WeChatAppEx.exe N/A | | 0 N/A N/A 18600 C+G ...ntrolPanel\SystemSettings.exe N/A | +-----------------------------------------------------------------------------------------+ ================================================== ❌ 严重错误发生: Traceback (most recent call last): File "E:\PyTorch_Build\pytorch\diagnostic_test.py", line 116, in <module> check_cuda_toolkit() File "E:\PyTorch_Build\pytorch\diagnostic_test.py", line 21, in check_cuda_toolkit cuda_path = os.environ.get('CUDA_PATH', '未设置') NameError: name 'os' is not defined 按 Enter 键退出... (rtx5070_env) PS E:\PyTorch_Build\pytorch> # 卸载现有版本 (rtx5070_env) PS E:\PyTorch_Build\pytorch> pip uninstall -y torch torchvision torchaudio WARNING: Skipping torch as it is not installed. WARNING: Skipping torchvision as it is not installed. WARNING: Skipping torchaudio as it is not installed. (rtx5070_env) PS E:\PyTorch_Build\pytorch> (rtx5070_env) PS E:\PyTorch_Build\pytorch> # 安装支持 RTX 5070 的预编译版本 (rtx5070_env) PS E:\PyTorch_Build\pytorch> pip install --pre torch torchvision torchaudio ` >> --index-url https://download.pytorch.org/whl/nightly/cu121 ` >> --no-deps Looking in indexes: https://download.pytorch.org/whl/nightly/cu121 Collecting torch Using cached https://download.pytorch.org/whl/nightly/cu121/torch-2.6.0.dev20241112%2Bcu121-cp310-cp310-win_amd64.whl (2456.2 MB) Collecting torchvision Using cached https://download.pytorch.org/whl/nightly/cu121/torchvision-0.20.0.dev20241112%2Bcu121-cp310-cp310-win_amd64.whl (6.2 MB) Collecting torchaudio Using cached https://download.pytorch.org/whl/nightly/cu121/torchaudio-2.5.0.dev20241112%2Bcu121-cp310-cp310-win_amd64.whl (4.2 MB) Installing collected packages: torchaudio, torchvision, torch Successfully installed torch-2.6.0.dev20241112+cu121 torchaudio-2.5.0.dev20241112+cu121 torchvision-0.20.0.dev20241112+cu121 (rtx5070_env) PS E:\PyTorch_Build\pytorch> (rtx5070_env) PS E:\PyTorch_Build\pytorch> # 安装必要依赖 (rtx5070_env) PS E:\PyTorch_Build\pytorch> pip install pyyaml numpy typing_extensions mkl mkl-include intel-openmp Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple Requirement already satisfied: pyyaml in e:\pytorch_build\pytorch\rtx5070_env\lib\site-packages (6.0.2) Requirement already satisfied: numpy in e:\pytorch_build\pytorch\rtx5070_env\lib\site-packages (2.2.6) Requirement already satisfied: typing_extensions in e:\pytorch_build\pytorch\rtx5070_env\lib\site-packages (4.15.0) Requirement already satisfied: mkl in e:\pytorch_build\pytorch\rtx5070_env\lib\site-packages (2025.2.0) Requirement already satisfied: mkl-include in e:\pytorch_build\pytorch\rtx5070_env\lib\site-packages (2025.2.0) Requirement already satisfied: intel-openmp in e:\pytorch_build\pytorch\rtx5070_env\lib\site-packages (2025.2.1) Requirement already satisfied: tbb==2022.* in e:\pytorch_build\pytorch\rtx5070_env\lib\site-packages (from mkl) (2022.2.0) Requirement already satisfied: intel-cmplr-lib-ur==2025.2.1 in e:\pytorch_build\pytorch\rtx5070_env\lib\site-packages (from intel-openmp) (2025.2.1) Requirement already satisfied: umf==0.11.* in e:\pytorch_build\pytorch\rtx5070_env\lib\site-packages (from intel-cmplr-lib-ur==2025.2.1->intel-openmp) (0.11.0) Requirement already satisfied: tcmlib==1.* in e:\pytorch_build\pytorch\rtx5070_env\lib\site-packages (from tbb==2022.*->mkl) (1.4.0) (rtx5070_env) PS E:\PyTorch_Build\pytorch> (rtx5070_env) PS E:\PyTorch_Build\pytorch> # 执行诊断测试 (rtx5070_env) PS E:\PyTorch_Build\pytorch> python diagnostic_test.py ================================================== CUDA Toolkit 验证: ✅ NVCC 版本: nvcc: NVIDIA (R) Cuda compiler driver Copyright (c) 2005-2025 NVIDIA Corporation Built on Wed_Jul_16_20:06:48_Pacific_Daylight_Time_2025 Cuda compilation tools, release 13.0, V13.0.48 Build cuda_13.0.r13.0/compiler.36260728_0 ✅ NVIDIA-SMI 输出: Mon Sep 1 20:55:52 2025 +-----------------------------------------------------------------------------------------+ | NVIDIA-SMI 580.97 Driver Version: 580.97 CUDA Version: 13.0 | +-----------------------------------------+------------------------+----------------------+ | GPU Name Driver-Model | Bus-Id Disp.A | Volatile Uncorr. ECC | | Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. | | | | MIG M. | |=========================================+========================+======================| | 0 NVIDIA GeForce RTX 5070 WDDM | 00000000:01:00.0 On | N/A | | 0% 35C P3 19W / 250W | 1346MiB / 12227MiB | 0% Default | | | | N/A | +-----------------------------------------+------------------------+----------------------+ +-----------------------------------------------------------------------------------------+ | Processes: | | GPU GI CI PID Type Process name GPU Memory | | ID ID Usage | |=========================================================================================| | 0 N/A N/A 1124 C+G ...yb3d8bbwe\WindowsTerminal.exe N/A | | 0 N/A N/A 1288 C+G ...les\Tencent\Weixin\Weixin.exe N/A | | 0 N/A N/A 1776 C+G C:\Windows\System32\dwm.exe N/A | | 0 N/A N/A 2272 C+G ...t\Edge\Application\msedge.exe N/A | | 0 N/A N/A 3268 C+G ...em32\ApplicationFrameHost.exe N/A | | 0 N/A N/A 7860 C+G C:\Windows\explorer.exe N/A | | 0 N/A N/A 8004 C+G ...indows\System32\ShellHost.exe N/A | | 0 N/A N/A 8156 C+G ...0.3405.125\msedgewebview2.exe N/A | | 0 N/A N/A 8852 C+G ..._cw5n1h2txyewy\SearchHost.exe N/A | | 0 N/A N/A 8876 C+G ...y\StartMenuExperienceHost.exe N/A | | 0 N/A N/A 10540 C+G ...0.3405.125\msedgewebview2.exe N/A | | 0 N/A N/A 12380 C+G ...5n1h2txyewy\TextInputHost.exe N/A | | 0 N/A N/A 15340 C+G ...acted\runtime\WeChatAppEx.exe N/A | | 0 N/A N/A 18600 C+G ...ntrolPanel\SystemSettings.exe N/A | +-----------------------------------------------------------------------------------------+ ================================================== ❌ 严重错误发生: Traceback (most recent call last): File "E:\PyTorch_Build\pytorch\diagnostic_test.py", line 116, in <module> check_cuda_toolkit() File "E:\PyTorch_Build\pytorch\diagnostic_test.py", line 21, in check_cuda_toolkit cuda_path = os.environ.get('CUDA_PATH', '未设置') NameError: name 'os' is not defined 按 Enter 键退出... (rtx5070_env) PS E:\PyTorch_Build\pytorch>
最新发布
09-02
PS C:\Users\Administrator\Desktop> cd E:\PyTorch_Build\pytorch PS E:\PyTorch_Build\pytorch> # 1. 激活虚拟环境 PS E:\PyTorch_Build\pytorch> .\pytorch_env\Scripts\activate (pytorch_env) PS E:\PyTorch_Build\pytorch> (pytorch_env) PS E:\PyTorch_Build\pytorch> # 2. 修复conda路径(执行一次即可) (pytorch_env) PS E:\PyTorch_Build\pytorch> $condaPath = "${env:USERPROFILE}\miniconda3\Scripts" (pytorch_env) PS E:\PyTorch_Build\pytorch> $env:PATH += ";$condaPath" (pytorch_env) PS E:\PyTorch_Build\pytorch> [Environment]::SetEnvironmentVariable("PATH", $env:PATH, "Machine") (pytorch_env) PS E:\PyTorch_Build\pytorch> (pytorch_env) PS E:\PyTorch_Build\pytorch> # 3. 验证修复 (pytorch_env) PS E:\PyTorch_Build\pytorch> conda --version # 应显示conda版本 conda: The term 'conda' is not recognized as a name of a cmdlet, function, script file, or executable program. Check the spelling of the name, or if a path was included, verify that the path is correct and try again. (pytorch_env) PS E:\PyTorch_Build\pytorch> # 1. 安装正确版本的MKL (pytorch_env) PS E:\PyTorch_Build\pytorch> pip uninstall -y mkl-static mkl-include Found existing installation: mkl-static 2024.1.0 Uninstalling mkl-static-2024.1.0: Successfully uninstalled mkl-static-2024.1.0 Found existing installation: mkl-include 2024.1.0 Uninstalling mkl-include-2024.1.0: Successfully uninstalled mkl-include-2024.1.0 (pytorch_env) PS E:\PyTorch_Build\pytorch> pip install mkl-static==2024.1 mkl-include==2024.1 Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple Collecting mkl-static==2024.1 Using cached https://pypi.tuna.tsinghua.edu.cn/packages/d8/f0/3b9976df82906d8f3244213b6d8beb67cda19ab5b0645eb199da3c826127/mkl_static-2024.1.0-py2.py3-none-win_amd64.whl (220.8 MB) Collecting mkl-include==2024.1 Using cached https://pypi.tuna.tsinghua.edu.cn/packages/06/1b/f05201146f7f12bf871fa2c62096904317447846b5d23f3560a89b4bbaae/mkl_include-2024.1.0-py2.py3-none-win_amd64.whl (1.3 MB) Requirement already satisfied: intel-openmp==2024.* in e:\pytorch_build\pytorch\pytorch_env\lib\site-packages (from mkl-static==2024.1) (2024.2.1) Requirement already satisfied: tbb-devel==2021.* in e:\pytorch_build\pytorch\pytorch_env\lib\site-packages (from mkl-static==2024.1) (2021.13.1) Requirement already satisfied: intel-cmplr-lib-ur==2024.2.1 in e:\pytorch_build\pytorch\pytorch_env\lib\site-packages (from intel-openmp==2024.*->mkl-static==2024.1) (2024.2.1) Requirement already satisfied: tbb==2021.13.1 in e:\pytorch_build\pytorch\pytorch_env\lib\site-packages (from tbb-devel==2021.*->mkl-static==2024.1) (2021.13.1) Installing collected packages: mkl-include, mkl-static Successfully installed mkl-include-2024.1.0 mkl-static-2024.1.0 (pytorch_env) PS E:\PyTorch_Build\pytorch> (pytorch_env) PS E:\PyTorch_Build\pytorch> # 2. 安装libuv (pytorch_env) PS E:\PyTorch_Build\pytorch> conda install -c conda-forge libuv=1.46 conda: The term 'conda' is not recognized as a name of a cmdlet, function, script file, or executable program. Check the spelling of the name, or if a path was included, verify that the path is correct and try again. (pytorch_env) PS E:\PyTorch_Build\pytorch> (pytorch_env) PS E:\PyTorch_Build\pytorch> # 3. 安装OpenSSL (pytorch_env) PS E:\PyTorch_Build\pytorch> conda install -c conda-forge openssl=3.1 conda: The term 'conda' is not recognized as a name of a cmdlet, function, script file, or executable program. Check the spelling of the name, or if a path was included, verify that the path is correct and try again. (pytorch_env) PS E:\PyTorch_Build\pytorch> (pytorch_env) PS E:\PyTorch_Build\pytorch> # 4. 验证安装 (pytorch_env) PS E:\PyTorch_Build\pytorch> python -c "import mkl; print('MKL版本:', mkl.__version__)" Traceback (most recent call last): File "<string>", line 1, in <module> ModuleNotFoundError: No module named 'mkl' (pytorch_env) PS E:\PyTorch_Build\pytorch> conda list | Select-String "libuv|openssl" conda: The term 'conda' is not recognized as a name of a cmdlet, function, script file, or executable program. Check the spelling of the name, or if a path was included, verify that the path is correct and try again. (pytorch_env) PS E:\PyTorch_Build\pytorch> # 验证所有关键组件 (pytorch_env) PS E:\PyTorch_Build\pytorch> python -c "import mkl; print('✓ MKL已安装')" Traceback (most recent call last): File "<string>", line 1, in <module> ModuleNotFoundError: No module named 'mkl' (pytorch_env) PS E:\PyTorch_Build\pytorch> conda list | Select-String "libuv|openssl" conda: The term 'conda' is not recognized as a name of a cmdlet, function, script file, or executable program. Check the spelling of the name, or if a path was included, verify that the path is correct and try again. (pytorch_env) PS E:\PyTorch_Build\pytorch> dir "E:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v13.0\bin\cudnn*" (pytorch_env) PS E:\PyTorch_Build\pytorch> (pytorch_env) PS E:\PyTorch_Build\pytorch> # 验证环境变量 (pytorch_env) PS E:\PyTorch_Build\pytorch> python -c "import os; print('环境变量检查:'); >> print('CUDNN_PATH:', os.getenv('CUDA_PATH')); >> print('CONDA_PREFIX:', os.getenv('CONDA_PREFIX'))" 环境变量检查: CUDNN_PATH: E:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v13.0 CONDA_PREFIX: None (pytorch_env) PS E:\PyTorch_Build\pytorch> # 清理并重建 (pytorch_env) PS E:\PyTorch_Build\pytorch> Remove-Item -Recurse -Force build (pytorch_env) PS E:\PyTorch_Build\pytorch> python setup.py install Building wheel torch-2.9.0a0+git2d31c3d -- Building version 2.9.0a0+git2d31c3d E:\PyTorch_Build\pytorch\pytorch_env\lib\site-packages\setuptools\_distutils\_msvccompiler.py:12: UserWarning: _get_vc_env is private; find an alternative (pypa/distutils#340) warnings.warn( -- Checkout nccl release tag: v2.27.5-1 cmake -GNinja -DBUILD_PYTHON=True -DBUILD_TEST=True -DCMAKE_BUILD_TYPE=Release -DCMAKE_INSTALL_PREFIX=E:\PyTorch_Build\pytorch\torch -DCMAKE_PREFIX_PATH=E:\PyTorch_Build\pytorch\pytorch_env\Lib\site-packages -DPython_EXECUTABLE=E:\PyTorch_Build\pytorch\pytorch_env\Scripts\python.exe -DTORCH_BUILD_VERSION=2.9.0a0+git2d31c3d -DUSE_NUMPY=True E:\PyTorch_Build\pytorch CMake Deprecation Warning at CMakeLists.txt:18 (cmake_policy): The OLD behavior for policy CMP0126 will be removed from a future version of CMake. The cmake-policies(7) manual explains that the OLD behaviors of all policies are deprecated and that a policy should be set to OLD only under specific short-term circumstances. Projects should be ported to the NEW behavior and not rely on setting a policy to OLD. -- The CXX compiler identification is MSVC 19.44.35215.0 -- The C compiler identification is MSVC 19.44.35215.0 -- Detecting CXX compiler ABI info -- Detecting CXX compiler ABI info - done -- Check for working CXX compiler: C:/Program Files (x86)/Microsoft Visual Studio/2022/BuildTools/VC/Tools/MSVC/14.44.35207/bin/Hostx64/x64/cl.exe - skipped -- Detecting CXX compile features -- Detecting CXX compile features - done -- Detecting C compiler ABI info -- Detecting C compiler ABI info - done -- Check for working C compiler: C:/Program Files (x86)/Microsoft Visual Studio/2022/BuildTools/VC/Tools/MSVC/14.44.35207/bin/Hostx64/x64/cl.exe - skipped -- Detecting C compile features -- Detecting C compile features - done -- Not forcing any particular BLAS to be found CMake Warning at CMakeLists.txt:425 (message): TensorPipe cannot be used on Windows. Set it to OFF CMake Warning at CMakeLists.txt:427 (message): KleidiAI cannot be used on Windows. Set it to OFF CMake Warning at CMakeLists.txt:439 (message): Libuv is not installed in current conda env. Set USE_DISTRIBUTED to OFF. Please run command 'conda install -c conda-forge libuv=1.39' to install libuv. -- Performing Test C_HAS_AVX_1 -- Performing Test C_HAS_AVX_1 - Success -- Performing Test C_HAS_AVX2_1 -- Performing Test C_HAS_AVX2_1 - Success -- Performing Test C_HAS_AVX512_1 -- Performing Test C_HAS_AVX512_1 - Success -- Performing Test CXX_HAS_AVX_1 -- Performing Test CXX_HAS_AVX_1 - Success -- Performing Test CXX_HAS_AVX2_1 -- Performing Test CXX_HAS_AVX2_1 - Success -- Performing Test CXX_HAS_AVX512_1 -- Performing Test CXX_HAS_AVX512_1 - Success -- Current compiler supports avx2 extension. Will build perfkernels. -- Performing Test COMPILER_SUPPORTS_HIDDEN_VISIBILITY -- Performing Test COMPILER_SUPPORTS_HIDDEN_VISIBILITY - Failed -- Performing Test COMPILER_SUPPORTS_HIDDEN_INLINE_VISIBILITY -- Performing Test COMPILER_SUPPORTS_HIDDEN_INLINE_VISIBILITY - Failed -- Could not find hardware support for NEON on this machine. -- No OMAP3 processor on this machine. -- No OMAP4 processor on this machine. -- Compiler does not support SVE extension. Will not build perfkernels. CMake Warning at CMakeLists.txt:845 (message): x64 operating system is required for FBGEMM. Not compiling with FBGEMM. Turn this warning off by USE_FBGEMM=OFF. -- Performing Test HAS/UTF_8 -- Performing Test HAS/UTF_8 - Success -- Found CUDA: E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0 (found version "13.0") -- The CUDA compiler identification is NVIDIA 13.0.48 with host compiler MSVC 19.44.35215.0 -- Detecting CUDA compiler ABI info -- Detecting CUDA compiler ABI info - done -- Check for working CUDA compiler: E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0/bin/nvcc.exe - skipped -- Detecting CUDA compile features -- Detecting CUDA compile features - done -- Found CUDAToolkit: E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0/include (found version "13.0.48") -- PyTorch: CUDA detected: 13.0 -- PyTorch: CUDA nvcc is: E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0/bin/nvcc.exe -- PyTorch: CUDA toolkit directory: E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0 -- PyTorch: Header version is: 13.0 -- Found Python: E:\PyTorch_Build\pytorch\pytorch_env\Scripts\python.exe (found version "3.10.10") found components: Interpreter CMake Warning at cmake/public/cuda.cmake:140 (message): Failed to compute shorthash for libnvrtc.so Call Stack (most recent call first): cmake/Dependencies.cmake:44 (include) CMakeLists.txt:873 (include) -- Could NOT find CUDNN (missing: CUDNN_LIBRARY_PATH CUDNN_INCLUDE_PATH) CMake Warning at cmake/public/cuda.cmake:201 (message): Cannot find cuDNN library. Turning the option off Call Stack (most recent call first): cmake/Dependencies.cmake:44 (include) CMakeLists.txt:873 (include) -- Could NOT find CUSPARSELT (missing: CUSPARSELT_LIBRARY_PATH CUSPARSELT_INCLUDE_PATH) CMake Warning at cmake/public/cuda.cmake:226 (message): Cannot find cuSPARSELt library. Turning the option off Call Stack (most recent call first): cmake/Dependencies.cmake:44 (include) CMakeLists.txt:873 (include) -- Could NOT find CUDSS (missing: CUDSS_LIBRARY_PATH CUDSS_INCLUDE_PATH) CMake Warning at cmake/public/cuda.cmake:242 (message): Cannot find CUDSS library. Turning the option off Call Stack (most recent call first): cmake/Dependencies.cmake:44 (include) CMakeLists.txt:873 (include) -- USE_CUFILE is set to 0. Compiling without cuFile support -- Autodetected CUDA architecture(s): 12.0 CMake Warning at cmake/public/cuda.cmake:317 (message): pytorch is not compatible with `CMAKE_CUDA_ARCHITECTURES` and will ignore its value. Please configure `TORCH_CUDA_ARCH_LIST` instead. Call Stack (most recent call first): cmake/Dependencies.cmake:44 (include) CMakeLists.txt:873 (include) -- Added CUDA NVCC flags for: -gencode;arch=compute_120,code=sm_120 CMake Warning at cmake/Dependencies.cmake:95 (message): Not compiling with XPU. Could NOT find SYCL. Suppress this warning with -DUSE_XPU=OFF. Call Stack (most recent call first): CMakeLists.txt:873 (include) -- Building using own protobuf under third_party per request. -- Use custom protobuf build. CMake Warning at cmake/ProtoBuf.cmake:37 (message): Ancient protobuf forces CMake compatibility Call Stack (most recent call first): cmake/ProtoBuf.cmake:87 (custom_protobuf_find) cmake/Dependencies.cmake:107 (include) CMakeLists.txt:873 (include) CMake Deprecation Warning at third_party/protobuf/cmake/CMakeLists.txt:2 (cmake_minimum_required): Compatibility with CMake < 3.10 will be removed from a future version of CMake. Update the VERSION argument <min> value. Or, use the <min>...<max> syntax to tell CMake that the project requires at least <min> but has been updated to work with policies introduced by <max> or earlier. -- -- 3.13.0.0 -- Performing Test CMAKE_HAVE_LIBC_PTHREAD -- Performing Test CMAKE_HAVE_LIBC_PTHREAD - Failed -- Looking for pthread_create in pthreads -- Looking for pthread_create in pthreads - not found -- Looking for pthread_create in pthread -- Looking for pthread_create in pthread - not found -- Found Threads: TRUE -- Caffe2 protobuf include directory: $<BUILD_INTERFACE:E:/PyTorch_Build/pytorch/third_party/protobuf/src>$<INSTALL_INTERFACE:include> -- Trying to find preferred BLAS backend of choice: MKL -- MKL_THREADING = OMP -- Looking for sys/types.h -- Looking for sys/types.h - found -- Looking for stdint.h -- Looking for stdint.h - found -- Looking for stddef.h -- Looking for stddef.h - found -- Check size of void* -- Check size of void* - done -- MKL_THREADING = OMP CMake Warning at cmake/Dependencies.cmake:213 (message): MKL could not be found. Defaulting to Eigen Call Stack (most recent call first): CMakeLists.txt:873 (include) CMake Warning at cmake/Dependencies.cmake:279 (message): Preferred BLAS (MKL) cannot be found, now searching for a general BLAS library Call Stack (most recent call first): CMakeLists.txt:873 (include) -- MKL_THREADING = OMP -- Checking for [mkl_intel_lp64 - mkl_intel_thread - mkl_core - libiomp5md] -- Library mkl_intel_lp64: not found -- Checking for [mkl_intel - mkl_intel_thread - mkl_core - libiomp5md] -- Library mkl_intel: not found -- Checking for [mkl_intel_lp64 - mkl_intel_thread - mkl_core] -- Library mkl_intel_lp64: not found -- Checking for [mkl_intel - mkl_intel_thread - mkl_core] -- Library mkl_intel: not found -- Checking for [mkl_intel_lp64 - mkl_sequential - mkl_core] -- Library mkl_intel_lp64: not found -- Checking for [mkl_intel - mkl_sequential - mkl_core] -- Library mkl_intel: not found -- Checking for [mkl_intel_lp64 - mkl_core - libiomp5md - pthread] -- Library mkl_intel_lp64: not found -- Checking for [mkl_intel - mkl_core - libiomp5md - pthread] -- Library mkl_intel: not found -- Checking for [mkl_intel_lp64 - mkl_core - pthread] -- Library mkl_intel_lp64: not found -- Checking for [mkl_intel - mkl_core - pthread] -- Library mkl_intel: not found -- Checking for [mkl - guide - pthread - m] -- Library mkl: not found -- MKL library not found -- Checking for [blis] -- Library blis: BLAS_blis_LIBRARY-NOTFOUND -- Checking for [Accelerate] -- Library Accelerate: BLAS_Accelerate_LIBRARY-NOTFOUND -- Checking for [vecLib] -- Library vecLib: BLAS_vecLib_LIBRARY-NOTFOUND -- Checking for [flexiblas] -- Library flexiblas: BLAS_flexiblas_LIBRARY-NOTFOUND -- Checking for [openblas] -- Library openblas: BLAS_openblas_LIBRARY-NOTFOUND -- Checking for [openblas - pthread - m] -- Library openblas: BLAS_openblas_LIBRARY-NOTFOUND -- Checking for [openblas - pthread - m - gomp] -- Library openblas: BLAS_openblas_LIBRARY-NOTFOUND -- Checking for [libopenblas] -- Library libopenblas: BLAS_libopenblas_LIBRARY-NOTFOUND -- Checking for [goto2 - gfortran] -- Library goto2: BLAS_goto2_LIBRARY-NOTFOUND -- Checking for [goto2 - gfortran - pthread] -- Library goto2: BLAS_goto2_LIBRARY-NOTFOUND -- Checking for [acml - gfortran] -- Library acml: BLAS_acml_LIBRARY-NOTFOUND -- Checking for [blis] -- Library blis: BLAS_blis_LIBRARY-NOTFOUND -- Could NOT find Atlas (missing: Atlas_CBLAS_INCLUDE_DIR Atlas_CLAPACK_INCLUDE_DIR Atlas_CBLAS_LIBRARY Atlas_BLAS_LIBRARY Atlas_LAPACK_LIBRARY) -- Checking for [ptf77blas - atlas - gfortran] -- Library ptf77blas: BLAS_ptf77blas_LIBRARY-NOTFOUND -- Checking for [] -- Looking for sgemm_ -- Looking for sgemm_ - not found -- Cannot find a library with BLAS API. Not using BLAS. -- Using pocketfft in directory: E:/PyTorch_Build/pytorch/third_party/pocketfft/ CMake Deprecation Warning at third_party/pthreadpool/CMakeLists.txt:1 (CMAKE_MINIMUM_REQUIRED): Compatibility with CMake < 3.10 will be removed from a future version of CMake. Update the VERSION argument <min> value. Or, use the <min>...<max> syntax to tell CMake that the project requires at least <min> but has been updated to work with policies introduced by <max> or earlier. CMake Deprecation Warning at third_party/FXdiv/CMakeLists.txt:1 (CMAKE_MINIMUM_REQUIRED): Compatibility with CMake < 3.10 will be removed from a future version of CMake. Update the VERSION argument <min> value. Or, use the <min>...<max> syntax to tell CMake that the project requires at least <min> but has been updated to work with policies introduced by <max> or earlier. CMake Deprecation Warning at third_party/cpuinfo/CMakeLists.txt:1 (CMAKE_MINIMUM_REQUIRED): Compatibility with CMake < 3.10 will be removed from a future version of CMake. Update the VERSION argument <min> value. Or, use the <min>...<max> syntax to tell CMake that the project requires at least <min> but has been updated to work with policies introduced by <max> or earlier. -- The ASM compiler identification is MSVC CMake Warning (dev) at pytorch_env/Lib/site-packages/cmake/data/share/cmake-4.1/Modules/CMakeDetermineASMCompiler.cmake:234 (message): Policy CMP194 is not set: MSVC is not an assembler for language ASM. Run "cmake --help-policy CMP194" for policy details. Use the cmake_policy command to set the policy and suppress this warning. Call Stack (most recent call first): third_party/XNNPACK/CMakeLists.txt:18 (PROJECT) This warning is for project developers. Use -Wno-dev to suppress it. -- Found assembler: C:/Program Files (x86)/Microsoft Visual Studio/2022/BuildTools/VC/Tools/MSVC/14.44.35207/bin/Hostx64/x64/cl.exe -- Building for XNNPACK_TARGET_PROCESSOR: x86_64 -- Generating microkernels.cmake Duplicate microkernel definition: src\qs8-qc4w-packw\gen\qs8-qc4w-packw-x8c8-gemm-goi-avx256vnni.c and src\qs8-qc4w-packw\gen\qs8-qc4w-packw-x8c8-gemm-goi-avxvnni.c (1th function) Duplicate microkernel definition: src\qs8-qc4w-packw\gen\qs8-qc4w-packw-x8c8-gemm-goi-avxvnni.c and src\qs8-qc4w-packw\gen\qs8-qc4w-packw-x8c8-gemm-goi-scalar.c No microkernel found in src\reference\binary-elementwise.cc No microkernel found in src\reference\packing.cc No microkernel found in src\reference\unary-elementwise.cc -- Found Git: E:/Program Files/Git/cmd/git.exe (found version "2.51.0.windows.1") -- Google Benchmark version: v1.9.3, normalized to 1.9.3 -- Looking for shm_open in rt -- Looking for shm_open in rt - not found -- Performing Test HAVE_CXX_FLAG_WX -- Performing Test HAVE_CXX_FLAG_WX - Success -- Compiling and running to test HAVE_STD_REGEX -- Performing Test HAVE_STD_REGEX -- success -- Compiling and running to test HAVE_GNU_POSIX_REGEX -- Performing Test HAVE_GNU_POSIX_REGEX -- failed to compile -- Compiling and running to test HAVE_POSIX_REGEX -- Performing Test HAVE_POSIX_REGEX -- failed to compile -- Compiling and running to test HAVE_STEADY_CLOCK -- Performing Test HAVE_STEADY_CLOCK -- success -- Compiling and running to test HAVE_PTHREAD_AFFINITY -- Performing Test HAVE_PTHREAD_AFFINITY -- failed to compile CMake Deprecation Warning at third_party/ittapi/CMakeLists.txt:7 (cmake_minimum_required): Compatibility with CMake < 3.10 will be removed from a future version of CMake. Update the VERSION argument <min> value. Or, use the <min>...<max> syntax to tell CMake that the project requires at least <min> but has been updated to work with policies introduced by <max> or earlier. CMake Warning at cmake/Dependencies.cmake:749 (message): FP16 is only cmake-2.8 compatible Call Stack (most recent call first): CMakeLists.txt:873 (include) CMake Deprecation Warning at third_party/FP16/CMakeLists.txt:1 (CMAKE_MINIMUM_REQUIRED): Compatibility with CMake < 3.10 will be removed from a future version of CMake. Update the VERSION argument <min> value. Or, use the <min>...<max> syntax to tell CMake that the project requires at least <min> but has been updated to work with policies introduced by <max> or earlier. CMake Deprecation Warning at third_party/psimd/CMakeLists.txt:1 (CMAKE_MINIMUM_REQUIRED): Compatibility with CMake < 3.10 will be removed from a future version of CMake. Update the VERSION argument <min> value. Or, use the <min>...<max> syntax to tell CMake that the project requires at least <min> but has been updated to work with policies introduced by <max> or earlier. -- Using third party subdirectory Eigen. -- Found Python: E:\PyTorch_Build\pytorch\pytorch_env\Scripts\python.exe (found version "3.10.10") found components: Interpreter Development.Module missing components: NumPy CMake Warning at cmake/Dependencies.cmake:826 (message): NumPy could not be found. Not building with NumPy. Suppress this warning with -DUSE_NUMPY=OFF Call Stack (most recent call first): CMakeLists.txt:873 (include) -- Using third_party/pybind11. -- pybind11 include dirs: E:/PyTorch_Build/pytorch/cmake/../third_party/pybind11/include -- Could NOT find OpenTelemetryApi (missing: OpenTelemetryApi_INCLUDE_DIRS) -- Using third_party/opentelemetry-cpp. -- opentelemetry api include dirs: E:/PyTorch_Build/pytorch/cmake/../third_party/opentelemetry-cpp/api/include -- Could NOT find MPI_C (missing: MPI_C_LIB_NAMES MPI_C_HEADER_DIR MPI_C_WORKS) -- Could NOT find MPI_CXX (missing: MPI_CXX_LIB_NAMES MPI_CXX_HEADER_DIR MPI_CXX_WORKS) -- Could NOT find MPI (missing: MPI_C_FOUND MPI_CXX_FOUND) CMake Warning at cmake/Dependencies.cmake:894 (message): Not compiling with MPI. Suppress this warning with -DUSE_MPI=OFF Call Stack (most recent call first): CMakeLists.txt:873 (include) -- MKL_THREADING = OMP -- Check OMP with lib C:/Program Files (x86)/Microsoft Visual Studio/2022/BuildTools/VC/Tools/MSVC/14.44.35207/lib/x64/libomp.lib and flags -openmp:experimental -- MKL_THREADING = OMP -- Check OMP with lib C:/Program Files (x86)/Microsoft Visual Studio/2022/BuildTools/VC/Tools/MSVC/14.44.35207/lib/x64/libomp.lib and flags -openmp:experimental -- Found OpenMP_C: -openmp:experimental -- Found OpenMP_CXX: -openmp:experimental -- Found OpenMP: TRUE -- Adding OpenMP CXX_FLAGS: -openmp:experimental -- Will link against OpenMP libraries: C:/Program Files (x86)/Microsoft Visual Studio/2022/BuildTools/VC/Tools/MSVC/14.44.35207/lib/x64/libomp.lib -- Found nvtx3: E:/PyTorch_Build/pytorch/third_party/NVTX/c/include -- ROCM_PATH environment variable is not set and C:/opt/rocm does not exist. Building without ROCm support. -- Found Python3: E:\PyTorch_Build\pytorch\pytorch_env\Scripts\python.exe (found version "3.10.10") found components: Interpreter -- ONNX_PROTOC_EXECUTABLE: $<TARGET_FILE:protobuf::protoc> -- Protobuf_VERSION: Protobuf_VERSION_NOTFOUND Generated: E:/PyTorch_Build/pytorch/build/third_party/onnx/onnx/onnx_onnx_torch-ml.proto Generated: E:/PyTorch_Build/pytorch/build/third_party/onnx/onnx/onnx-operators_onnx_torch-ml.proto Generated: E:/PyTorch_Build/pytorch/build/third_party/onnx/onnx/onnx-data_onnx_torch.proto -- -- ******** Summary ******** -- CMake version : 4.1.0 -- CMake command : E:/PyTorch_Build/pytorch/pytorch_env/Lib/site-packages/cmake/data/bin/cmake.exe -- System : Windows -- C++ compiler : C:/Program Files (x86)/Microsoft Visual Studio/2022/BuildTools/VC/Tools/MSVC/14.44.35207/bin/Hostx64/x64/cl.exe -- C++ compiler version : 19.44.35215.0 -- CXX flags : /DWIN32 /D_WINDOWS /EHsc /Zc:__cplusplus /bigobj /FS /utf-8 -DUSE_PTHREADPOOL /EHsc /wd26812 -- Build type : Release -- Compile definitions : ONNX_ML=1;ONNXIFI_ENABLE_EXT=1 -- CMAKE_PREFIX_PATH : E:\PyTorch_Build\pytorch\pytorch_env\Lib\site-packages;E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0;E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0;E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0 -- CMAKE_INSTALL_PREFIX : E:/PyTorch_Build/pytorch/torch -- CMAKE_MODULE_PATH : E:/PyTorch_Build/pytorch/cmake/Modules;E:/PyTorch_Build/pytorch/cmake/public/../Modules_CUDA_fix -- -- ONNX version : 1.18.0 -- ONNX NAMESPACE : onnx_torch -- ONNX_USE_LITE_PROTO : OFF -- USE_PROTOBUF_SHARED_LIBS : OFF -- ONNX_DISABLE_EXCEPTIONS : OFF -- ONNX_DISABLE_STATIC_REGISTRATION : OFF -- ONNX_WERROR : OFF -- ONNX_BUILD_TESTS : OFF -- BUILD_SHARED_LIBS : OFF -- -- Protobuf compiler : $<TARGET_FILE:protobuf::protoc> -- Protobuf includes : -- Protobuf libraries : -- ONNX_BUILD_PYTHON : OFF -- Found CUDA with FP16 support, compiling with torch.cuda.HalfTensor -- Adding -DNDEBUG to compile flags -- Checking prototype magma_get_sgeqrf_nb for MAGMA_V2 -- Checking prototype magma_get_sgeqrf_nb for MAGMA_V2 - False -- MAGMA not found. Compiling without MAGMA support -- Could not find hardware support for NEON on this machine. -- No OMAP3 processor on this machine. -- No OMAP4 processor on this machine. -- MKL_THREADING = OMP -- Checking for [mkl_intel_lp64 - mkl_intel_thread - mkl_core - libiomp5md] -- Library mkl_intel_lp64: not found -- Checking for [mkl_intel - mkl_intel_thread - mkl_core - libiomp5md] -- Library mkl_intel: not found -- Checking for [mkl_intel_lp64 - mkl_intel_thread - mkl_core] -- Library mkl_intel_lp64: not found -- Checking for [mkl_intel - mkl_intel_thread - mkl_core] -- Library mkl_intel: not found -- Checking for [mkl_intel_lp64 - mkl_sequential - mkl_core] -- Library mkl_intel_lp64: not found -- Checking for [mkl_intel - mkl_sequential - mkl_core] -- Library mkl_intel: not found -- Checking for [mkl_intel_lp64 - mkl_core - libiomp5md - pthread] -- Library mkl_intel_lp64: not found -- Checking for [mkl_intel - mkl_core - libiomp5md - pthread] -- Library mkl_intel: not found -- Checking for [mkl_intel_lp64 - mkl_core - pthread] -- Library mkl_intel_lp64: not found -- Checking for [mkl_intel - mkl_core - pthread] -- Library mkl_intel: not found -- Checking for [mkl - guide - pthread - m] -- Library mkl: not found -- MKL library not found -- Checking for [blis] -- Library blis: BLAS_blis_LIBRARY-NOTFOUND -- Checking for [Accelerate] -- Library Accelerate: BLAS_Accelerate_LIBRARY-NOTFOUND -- Checking for [vecLib] -- Library vecLib: BLAS_vecLib_LIBRARY-NOTFOUND -- Checking for [flexiblas] -- Library flexiblas: BLAS_flexiblas_LIBRARY-NOTFOUND -- Checking for [openblas] -- Library openblas: BLAS_openblas_LIBRARY-NOTFOUND -- Checking for [openblas - pthread - m] -- Library openblas: BLAS_openblas_LIBRARY-NOTFOUND -- Checking for [openblas - pthread - m - gomp] -- Library openblas: BLAS_openblas_LIBRARY-NOTFOUND -- Checking for [libopenblas] -- Library libopenblas: BLAS_libopenblas_LIBRARY-NOTFOUND -- Checking for [goto2 - gfortran] -- Library goto2: BLAS_goto2_LIBRARY-NOTFOUND -- Checking for [goto2 - gfortran - pthread] -- Library goto2: BLAS_goto2_LIBRARY-NOTFOUND -- Checking for [acml - gfortran] -- Library acml: BLAS_acml_LIBRARY-NOTFOUND -- Checking for [blis] -- Library blis: BLAS_blis_LIBRARY-NOTFOUND -- Could NOT find Atlas (missing: Atlas_CBLAS_INCLUDE_DIR Atlas_CLAPACK_INCLUDE_DIR Atlas_CBLAS_LIBRARY Atlas_BLAS_LIBRARY Atlas_LAPACK_LIBRARY) -- Checking for [ptf77blas - atlas - gfortran] -- Library ptf77blas: BLAS_ptf77blas_LIBRARY-NOTFOUND -- Checking for [] -- Cannot find a library with BLAS API. Not using BLAS. -- LAPACK requires BLAS -- Cannot find a library with LAPACK API. Not using LAPACK. disabling ROCM because NOT USE_ROCM is set -- MIOpen not found. Compiling without MIOpen support disabling MKLDNN because USE_MKLDNN is not set -- {fmt} version: 11.2.0 -- Build type: Release -- Using Kineto with CUPTI support -- Configuring Kineto dependency: -- KINETO_SOURCE_DIR = E:/PyTorch_Build/pytorch/third_party/kineto/libkineto -- KINETO_BUILD_TESTS = OFF -- KINETO_LIBRARY_TYPE = static -- CUDA_SOURCE_DIR = E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0 -- CUDA_INCLUDE_DIRS = E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0/include -- CUPTI_INCLUDE_DIR = E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0/extras/CUPTI/include -- CUDA_cupti_LIBRARY = E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0/extras/CUPTI/lib64/cupti.lib -- Found CUPTI CMake Deprecation Warning at third_party/kineto/libkineto/CMakeLists.txt:7 (cmake_minimum_required): Compatibility with CMake < 3.10 will be removed from a future version of CMake. Update the VERSION argument <min> value. Or, use the <min>...<max> syntax to tell CMake that the project requires at least <min> but has been updated to work with policies introduced by <max> or earlier. CMake Warning (dev) at third_party/kineto/libkineto/CMakeLists.txt:15 (find_package): Policy CMP0148 is not set: The FindPythonInterp and FindPythonLibs modules are removed. Run "cmake --help-policy CMP0148" for policy details. Use the cmake_policy command to set the policy and suppress this warning. This warning is for project developers. Use -Wno-dev to suppress it. -- Found PythonInterp: E:/PyTorch_Build/pytorch/pytorch_env/Scripts/python.exe (found version "3.10.10") -- ROCM_SOURCE_DIR = -- Kineto: FMT_SOURCE_DIR = E:/PyTorch_Build/pytorch/third_party/fmt -- Kineto: FMT_INCLUDE_DIR = E:/PyTorch_Build/pytorch/third_party/fmt/include -- CUPTI_INCLUDE_DIR = E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0/extras/CUPTI/include -- ROCTRACER_INCLUDE_DIR = /include/roctracer -- DYNOLOG_INCLUDE_DIR = E:/PyTorch_Build/pytorch/third_party/kineto/libkineto/third_party/dynolog/ -- IPCFABRIC_INCLUDE_DIR = E:/PyTorch_Build/pytorch/third_party/kineto/libkineto/third_party/dynolog//dynolog/src/ipcfabric/ -- Configured Kineto -- Performing Test HAS/WD4624 -- Performing Test HAS/WD4624 - Success -- Performing Test HAS/WD4068 -- Performing Test HAS/WD4068 - Success -- Performing Test HAS/WD4067 -- Performing Test HAS/WD4067 - Success -- Performing Test HAS/WD4267 -- Performing Test HAS/WD4267 - Success -- Performing Test HAS/WD4661 -- Performing Test HAS/WD4661 - Success -- Performing Test HAS/WD4717 -- Performing Test HAS/WD4717 - Success -- Performing Test HAS/WD4244 -- Performing Test HAS/WD4244 - Success -- Performing Test HAS/WD4804 -- Performing Test HAS/WD4804 - Success -- Performing Test HAS/WD4273 -- Performing Test HAS/WD4273 - Success -- Performing Test HAS_WNO_STRINGOP_OVERFLOW -- Performing Test HAS_WNO_STRINGOP_OVERFLOW - Failed -- -- Architecture: x64 -- Use the C++ compiler to compile (MI_USE_CXX=ON) -- -- Library name : mimalloc -- Version : 2.2.4 -- Build type : release -- C++ Compiler : C:/Program Files (x86)/Microsoft Visual Studio/2022/BuildTools/VC/Tools/MSVC/14.44.35207/bin/Hostx64/x64/cl.exe -- Compiler flags : /Zc:__cplusplus -- Compiler defines : MI_CMAKE_BUILD_TYPE=release;MI_BUILD_RELEASE -- Link libraries : psapi;shell32;user32;advapi32;bcrypt -- Build targets : static -- CMake Error at CMakeLists.txt:1264 (add_subdirectory): The source directory E:/PyTorch_Build/pytorch/torch/headeronly does not contain a CMakeLists.txt file. -- don't use NUMA -- Looking for backtrace -- Looking for backtrace - not found -- Could NOT find Backtrace (missing: Backtrace_LIBRARY Backtrace_INCLUDE_DIR) -- Autodetected CUDA architecture(s): 12.0 -- Autodetected CUDA architecture(s): 12.0 -- Autodetected CUDA architecture(s): 12.0 -- headers outputs: torch\csrc\inductor\aoti_torch\generated\c_shim_cpu.h not found torch\csrc\inductor\aoti_torch\generated\c_shim_aten.h not found torch\csrc\inductor\aoti_torch\generated\c_shim_cuda.h not found -- sources outputs: -- declarations_yaml outputs: -- Performing Test COMPILER_SUPPORTS_NO_AVX256_SPLIT -- Performing Test COMPILER_SUPPORTS_NO_AVX256_SPLIT - Failed -- Using ATen parallel backend: OMP -- Could NOT find OpenSSL, try to set the path to OpenSSL root folder in the system variable OPENSSL_ROOT_DIR (missing: OPENSSL_CRYPTO_LIBRARY OPENSSL_INCLUDE_DIR) -- Check size of long double -- Check size of long double - done -- Performing Test COMPILER_SUPPORTS_FLOAT128 -- Performing Test COMPILER_SUPPORTS_FLOAT128 - Failed -- Performing Test COMPILER_SUPPORTS_SSE2 -- Performing Test COMPILER_SUPPORTS_SSE2 - Success -- Performing Test COMPILER_SUPPORTS_SSE4 -- Performing Test COMPILER_SUPPORTS_SSE4 - Success -- Performing Test COMPILER_SUPPORTS_AVX -- Performing Test COMPILER_SUPPORTS_AVX - Success -- Performing Test COMPILER_SUPPORTS_FMA4 -- Performing Test COMPILER_SUPPORTS_FMA4 - Success -- Performing Test COMPILER_SUPPORTS_AVX2 -- Performing Test COMPILER_SUPPORTS_AVX2 - Success -- Performing Test COMPILER_SUPPORTS_AVX512F -- Performing Test COMPILER_SUPPORTS_AVX512F - Success -- Found OpenMP_C: -openmp:experimental (found version "2.0") -- Found OpenMP_CXX: -openmp:experimental (found version "2.0") -- Found OpenMP_CUDA: -openmp (found version "2.0") -- Found OpenMP: TRUE (found version "2.0") -- Performing Test COMPILER_SUPPORTS_OPENMP -- Performing Test COMPILER_SUPPORTS_OPENMP - Success -- Performing Test COMPILER_SUPPORTS_OMP_SIMD -- Performing Test COMPILER_SUPPORTS_OMP_SIMD - Failed -- Performing Test COMPILER_SUPPORTS_WEAK_ALIASES -- Performing Test COMPILER_SUPPORTS_WEAK_ALIASES - Failed -- Performing Test COMPILER_SUPPORTS_BUILTIN_MATH -- Performing Test COMPILER_SUPPORTS_BUILTIN_MATH - Failed -- Performing Test COMPILER_SUPPORTS_SYS_GETRANDOM -- Performing Test COMPILER_SUPPORTS_SYS_GETRANDOM - Failed -- Configuring build for SLEEF-v3.8.0 Target system: Windows-10.0.26100 Target processor: AMD64 Host system: Windows-10.0.26100 Host processor: AMD64 Detected C compiler: MSVC @ C:/Program Files (x86)/Microsoft Visual Studio/2022/BuildTools/VC/Tools/MSVC/14.44.35207/bin/Hostx64/x64/cl.exe CMake: 4.1.0 Make program: E:/PyTorch_Build/pytorch/pytorch_env/Scripts/ninja.exe -- Using option `/D_CRT_SECURE_NO_WARNINGS /D_CRT_NONSTDC_NO_DEPRECATE ` to compile libsleef -- Building shared libs : OFF -- Building static test bins: OFF -- MPFR : LIB_MPFR-NOTFOUND -- GMP : LIBGMP-NOTFOUND -- RT : -- FFTW3 : LIBFFTW3-NOTFOUND -- OPENSSL : -- SDE : SDE_COMMAND-NOTFOUND -- COMPILER_SUPPORTS_OPENMP : FALSE AT_INSTALL_INCLUDE_DIR include/ATen/core core header install: E:/PyTorch_Build/pytorch/build/aten/src/ATen/core/aten_interned_strings.h core header install: E:/PyTorch_Build/pytorch/build/aten/src/ATen/core/enum_tag.h core header install: E:/PyTorch_Build/pytorch/build/aten/src/ATen/core/TensorBody.h CMake Error: File E:/PyTorch_Build/pytorch/torch/_utils_internal.py does not exist. CMake Error at caffe2/CMakeLists.txt:241 (configure_file): configure_file Problem configuring file CMake Error: File E:/PyTorch_Build/pytorch/torch/csrc/api/include/torch/version.h.in does not exist. CMake Error at caffe2/CMakeLists.txt:246 (configure_file): configure_file Problem configuring file -- NVSHMEM not found, not building with NVSHMEM support. CMake Error at caffe2/CMakeLists.txt:1398 (add_subdirectory): The source directory E:/PyTorch_Build/pytorch/torch does not contain a CMakeLists.txt file. CMake Warning at CMakeLists.txt:1285 (message): Generated cmake files are only fully tested if one builds with system glog, gflags, and protobuf. Other settings may generate files that are not well tested. -- -- ******** Summary ******** -- General: -- CMake version : 4.1.0 -- CMake command : E:/PyTorch_Build/pytorch/pytorch_env/Lib/site-packages/cmake/data/bin/cmake.exe -- System : Windows -- C++ compiler : C:/Program Files (x86)/Microsoft Visual Studio/2022/BuildTools/VC/Tools/MSVC/14.44.35207/bin/Hostx64/x64/cl.exe -- C++ compiler id : MSVC -- C++ compiler version : 19.44.35215.0 -- Using ccache if found : OFF -- CXX flags : /DWIN32 /D_WINDOWS /EHsc /Zc:__cplusplus /bigobj /FS /utf-8 -DUSE_PTHREADPOOL -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOROCTRACER -DLIBKINETO_NOXPUPTI=ON -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE /wd4624 /wd4068 /wd4067 /wd4267 /wd4661 /wd4717 /wd4244 /wd4804 /wd4273 -- Shared LD flags : /machine:x64 /ignore:4049 /ignore:4217 /ignore:4099 -- Static LD flags : /machine:x64 /ignore:4049 /ignore:4217 /ignore:4099 -- Module LD flags : /machine:x64 /ignore:4049 /ignore:4217 /ignore:4099 -- Build type : Release -- Compile definitions : ONNX_ML=1;ONNXIFI_ENABLE_EXT=1;ONNX_NAMESPACE=onnx_torch;_CRT_SECURE_NO_DEPRECATE=1;USE_EXTERNAL_MZCRC;MINIZ_DISABLE_ZIP_READER_CRC32_CHECKS;EXPORT_AOTI_FUNCTIONS;WIN32_LEAN_AND_MEAN;_UCRT_LEGACY_INFINITY;NOMINMAX;USE_MIMALLOC -- CMAKE_PREFIX_PATH : E:\PyTorch_Build\pytorch\pytorch_env\Lib\site-packages;E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0;E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0;E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0 -- CMAKE_INSTALL_PREFIX : E:/PyTorch_Build/pytorch/torch -- USE_GOLD_LINKER : OFF -- -- TORCH_VERSION : 2.9.0 -- BUILD_STATIC_RUNTIME_BENCHMARK: OFF -- BUILD_BINARY : OFF -- BUILD_CUSTOM_PROTOBUF : ON -- Link local protobuf : ON -- BUILD_PYTHON : True -- Python version : 3.10.10 -- Python executable : E:\PyTorch_Build\pytorch\pytorch_env\Scripts\python.exe -- Python library : E:/Python310/libs/python310.lib -- Python includes : E:/Python310/Include -- Python site-package : E:\PyTorch_Build\pytorch\pytorch_env\Lib\site-packages -- BUILD_SHARED_LIBS : ON -- CAFFE2_USE_MSVC_STATIC_RUNTIME : OFF -- BUILD_TEST : True -- BUILD_JNI : OFF -- BUILD_MOBILE_AUTOGRAD : OFF -- BUILD_LITE_INTERPRETER: OFF -- INTERN_BUILD_MOBILE : -- TRACING_BASED : OFF -- USE_BLAS : 0 -- USE_LAPACK : 0 -- USE_ASAN : OFF -- USE_TSAN : OFF -- USE_CPP_CODE_COVERAGE : OFF -- USE_CUDA : ON -- CUDA static link : OFF -- USE_CUDNN : OFF -- USE_CUSPARSELT : OFF -- USE_CUDSS : OFF -- USE_CUFILE : OFF -- CUDA version : 13.0 -- USE_FLASH_ATTENTION : OFF -- USE_MEM_EFF_ATTENTION : ON -- CUDA root directory : E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0 -- CUDA library : E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0/lib/x64/cuda.lib -- cudart library : E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0/lib/x64/cudart.lib -- cublas library : E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0/lib/x64/cublas.lib -- cufft library : E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0/lib/x64/cufft.lib -- curand library : E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0/lib/x64/curand.lib -- cusparse library : E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0/lib/x64/cusparse.lib -- nvrtc : E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0/lib/x64/nvrtc.lib -- CUDA include path : E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0/include -- NVCC executable : E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0/bin/nvcc.exe -- CUDA compiler : E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0/bin/nvcc.exe -- CUDA flags : -DLIBCUDACXX_ENABLE_SIMPLIFIED_COMPLEX_OPERATIONS -Xcompiler /Zc:__cplusplus -Xcompiler /w -w -Xcompiler /FS -Xfatbin -compress-all -DONNX_NAMESPACE=onnx_torch --use-local-env -gencode arch=compute_120,code=sm_120 -Xcudafe --diag_suppress=cc_clobber_ignored,--diag_suppress=field_without_dll_interface,--diag_suppress=base_class_has_different_dll_interface,--diag_suppress=dll_interface_conflict_none_assumed,--diag_suppress=dll_interface_conflict_dllexport_assumed,--diag_suppress=bad_friend_decl --Werror cross-execution-space-call --no-host-device-move-forward --expt-relaxed-constexpr --expt-extended-lambda -Xcompiler=/wd4819,/wd4503,/wd4190,/wd4244,/wd4251,/wd4275,/wd4522 -Wno-deprecated-gpu-targets --expt-extended-lambda -DCUB_WRAPPED_NAMESPACE=at_cuda_detail -DCUDA_HAS_FP16=1 -D__CUDA_NO_HALF_OPERATORS__ -D__CUDA_NO_HALF_CONVERSIONS__ -D__CUDA_NO_HALF2_OPERATORS__ -D__CUDA_NO_BFLOAT16_CONVERSIONS__ -- CUDA host compiler : -- CUDA --device-c : OFF -- USE_TENSORRT : -- USE_XPU : OFF -- USE_ROCM : OFF -- BUILD_NVFUSER : -- USE_EIGEN_FOR_BLAS : ON -- USE_EIGEN_FOR_SPARSE : OFF -- USE_FBGEMM : OFF -- USE_KINETO : ON -- USE_GFLAGS : OFF -- USE_GLOG : OFF -- USE_LITE_PROTO : OFF -- USE_PYTORCH_METAL : OFF -- USE_PYTORCH_METAL_EXPORT : OFF -- USE_MPS : OFF -- CAN_COMPILE_METAL : -- USE_MKL : OFF -- USE_MKLDNN : OFF -- USE_UCC : OFF -- USE_ITT : ON -- USE_XCCL : OFF -- USE_NCCL : OFF -- Found NVSHMEM : -- USE_NNPACK : OFF -- USE_NUMPY : OFF -- USE_OBSERVERS : ON -- USE_OPENCL : OFF -- USE_OPENMP : ON -- USE_MIMALLOC : ON -- USE_MIMALLOC_ON_MKL : OFF -- USE_VULKAN : OFF -- USE_PROF : OFF -- USE_PYTORCH_QNNPACK : OFF -- USE_XNNPACK : ON -- USE_DISTRIBUTED : OFF -- Public Dependencies : -- Private Dependencies : Threads::Threads;pthreadpool;cpuinfo;XNNPACK;microkernels-prod;ittnotify;fp16;caffe2::openmp;fmt::fmt-header-only;kineto -- Public CUDA Deps. : -- Private CUDA Deps. : caffe2::curand;caffe2::cufft;caffe2::cublas;fmt::fmt-header-only;E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0/lib/x64/cudart_static.lib;CUDA::cusparse;CUDA::cufft;CUDA::cusolver;ATEN_CUDA_FILES_GEN_LIB -- USE_COREML_DELEGATE : OFF -- BUILD_LAZY_TS_BACKEND : ON -- USE_ROCM_KERNEL_ASSERT : OFF -- Performing Test HAS_WMISSING_PROTOTYPES -- Performing Test HAS_WMISSING_PROTOTYPES - Failed -- Performing Test HAS_WERROR_MISSING_PROTOTYPES -- Performing Test HAS_WERROR_MISSING_PROTOTYPES - Failed -- Configuring incomplete, errors occurred! (pytorch_env) PS E:\PyTorch_Build\pytorch> # 永久修复conda命令不可用问题 (pytorch_env) PS E:\PyTorch_Build\pytorch> $condaPaths = @( >> "$env:USERPROFILE\miniconda3\Scripts", >> "$env:USERPROFILE\anaconda3\Scripts", >> "C:\ProgramData\miniconda3\Scripts" >> ) (pytorch_env) PS E:\PyTorch_Build\pytorch> (pytorch_env) PS E:\PyTorch_Build\pytorch> foreach ($path in $condaPaths) { >> if (Test-Path $path) { >> $env:PATH = "$path;$env:PATH" >> [Environment]::SetEnvironmentVariable("PATH", $env:PATH, "Machine") >> break >> } >> } (pytorch_env) PS E:\PyTorch_Build\pytorch> (pytorch_env) PS E:\PyTorch_Build\pytorch> # 验证修复 (pytorch_env) PS E:\PyTorch_Build\pytorch> conda --version conda: The term 'conda' is not recognized as a name of a cmdlet, function, script file, or executable program. Check the spelling of the name, or if a path was included, verify that the path is correct and try again. (pytorch_env) PS E:\PyTorch_Build\pytorch> # 设置 cuDNN v9.12 路径 (pytorch_env) PS E:\PyTorch_Build\pytorch> $cudnnPath = "E:\Program Files\NVIDIA\CUNND\v9.12" (pytorch_env) PS E:\PyTorch_Build\pytorch> (pytorch_env) PS E:\PyTorch_Build\pytorch> # 添加到环境变量 (pytorch_env) PS E:\PyTorch_Build\pytorch> $env:CUDNN_ROOT_DIR = $cudnnPath (pytorch_env) PS E:\PyTorch_Build\pytorch> $env:CUDNN_INCLUDE_DIR = "$cudnnPath\include" (pytorch_env) PS E:\PyTorch_Build\pytorch> $env:CUDNN_LIBRARY = "$cudnnPath\lib\x64\cudnn.lib" (pytorch_env) PS E:\PyTorch_Build\pytorch> (pytorch_env) PS E:\PyTorch_Build\pytorch> # 永久生效 (pytorch_env) PS E:\PyTorch_Build\pytorch> [Environment]::SetEnvironmentVariable("CUDNN_ROOT_DIR", $cudnnPath, "Machine") (pytorch_env) PS E:\PyTorch_Build\pytorch> [Environment]::SetEnvironmentVariable("CUDNN_INCLUDE_DIR", "$cudnnPath\include", "Machine") (pytorch_env) PS E:\PyTorch_Build\pytorch> [Environment]::SetEnvironmentVariable("CUDNN_LIBRARY", "$cudnnPath\lib\x64\cudnn.lib", "Machine") (pytorch_env) PS E:\PyTorch_Build\pytorch> # 原始代码大约在 190 行左右 (pytorch_env) PS E:\PyTorch_Build\pytorch> # 替换为以下内容强制使用 v9.12: (pytorch_env) PS E:\PyTorch_Build\pytorch> (pytorch_env) PS E:\PyTorch_Build\pytorch> set(CUDNN_VERSION "9.12.0") # 手动指定版本 CUDNN_VERSION: The term 'CUDNN_VERSION' is not recognized as a name of a cmdlet, function, script file, or executable program. Check the spelling of the name, or if a path was included, verify that the path is correct and try again. (pytorch_env) PS E:\PyTorch_Build\pytorch> set(CUDNN_FOUND TRUE) CUDNN_FOUND: The term 'CUDNN_FOUND' is not recognized as a name of a cmdlet, function, script file, or executable program. Check the spelling of the name, or if a path was included, verify that the path is correct and try again. (pytorch_env) PS E:\PyTorch_Build\pytorch> set(CUDNN_INCLUDE_DIR $ENV{CUDNN_INCLUDE_DIR}) InvalidOperation: The variable '$ENV' cannot be retrieved because it has not been set. (pytorch_env) PS E:\PyTorch_Build\pytorch> set(CUDNN_LIBRARY $ENV{CUDNN_LIBRARY}) InvalidOperation: The variable '$ENV' cannot be retrieved because it has not been set. (pytorch_env) PS E:\PyTorch_Build\pytorch> (pytorch_env) PS E:\PyTorch_Build\pytorch> message(STATUS "Using manually configured cuDNN v${CUDNN_VERSION}") InvalidOperation: The variable '$CUDNN_VERSION' cannot be retrieved because it has not been set. (pytorch_env) PS E:\PyTorch_Build\pytorch> message(STATUS " Include path: ${CUDNN_INCLUDE_DIR}") InvalidOperation: The variable '$CUDNN_INCLUDE_DIR' cannot be retrieved because it has not been set. (pytorch_env) PS E:\PyTorch_Build\pytorch> message(STATUS " Library path: ${CUDNN_LIBRARY}") InvalidOperation: The variable '$CUDNN_LIBRARY' cannot be retrieved because it has not been set. (pytorch_env) PS E:\PyTorch_Build\pytorch> # 精确查找 conda.bat (pytorch_env) PS E:\PyTorch_Build\pytorch> $condaPath = Get-ChildItem -Path C:\ -Recurse -Filter conda.bat -ErrorAction SilentlyContinue | >> Select-Object -First 1 | >> ForEach-Object { $_.DirectoryName } (pytorch_env) PS E:\PyTorch_Build\pytorch> (pytorch_env) PS E:\PyTorch_Build\pytorch> if ($condaPath) { >> $env:PATH = "$condaPath;$env:PATH" >> [Environment]::SetEnvironmentVariable("PATH", $env:PATH, "Machine") >> Write-Host "Conda found at: $condaPath" -ForegroundColor Green >> } else { >> Write-Host "Conda not found! Installing miniconda..." -ForegroundColor Yellow >> # 自动安装 miniconda >> Invoke-WebRequest -Uri "https://repo.anaconda.com/miniconda/Miniconda3-latest-Windows-x86_64.exe" -OutFile "$env:TEMP\miniconda.exe" >> Start-Process -FilePath "$env:TEMP\miniconda.exe" -ArgumentList "/S", "/AddToPath=1", "/InstallationType=AllUsers", "/D=C:\Miniconda3" -Wait >> $env:PATH = "C:\Miniconda3\Scripts;$env:PATH" >> } Conda not found! Installing miniconda... /AddToPath=1 is disabled and ignored in 'All Users' installations Welcome to Miniconda3 py313_25.7.0-2 By continuing this installation you are accepting this license agreement: C:\Miniconda3\EULA.txt Please run the installer in GUI mode to read the details. Miniconda3 will now be installed into this location: C:\Miniconda3 Unpacking payload... Setting up the package cache... Setting up the base environment... Installing packages for base, creating shortcuts if necessary... Initializing conda directories... Setting installation directory permissions... Done! (pytorch_env) PS E:\PyTorch_Build\pytorch> (pytorch_env) PS E:\PyTorch_Build\pytorch>
09-02
### 三级标题:使用 `convert_imageset.exe` 将图像转换为灰度并调整大小为 110x98 后生成 LMDB 训练数据集 在 Windows 环境下,可以使用 Caffe 提供的 `convert_imageset.exe` 工具将图像数据集转换为 LMDB 格式,并在此过程中进行灰度化和调整图像尺寸的操作。该工具位于 Caffe 的 `build/tools/Release` 目录下,例如路径可能为 `C:\caffe\build\tools\Release\convert_imageset.exe`。 为了将图像转换为灰度图并调整尺寸为 110x98,可以在命令行中使用以下参数: - `--gray`:指定以灰度模式读取图像,默认为 `false`。 - `--resize_width=110`:设置图像宽度为 110 像素。 - `--resize_height=98`:设置图像高度为 98 像素。 - `<图像根目录>`:图像的根目录,通常与标签文件中的路径一致。 - `<图像列表文件>`:包含图像路径和标签的文本文件。 - `<输出目录>`:生成的 LMDB 数据集的存储路径。 - `--backend=lmdb`:指定输出数据库的类型为 LMDB。 以下是一个完整的命令示例: ```bash C:\caffe\build\tools\Release\convert_imageset.exe --gray --resize_width=110 --resize_height=98 ./Train(110x98) Train(110x98).txt train_lmdb(110x98) --backend=lmdb ``` 执行该命令后,工具会读取 `Train(110x98).txt` 文件中的图像路径和标签,将图像转换为灰度图并调整尺寸为 110x98,最终生成 LMDB 格式的数据集存储在 `train_lmdb(110x98)` 目录中。 该工具的源码位于 `caffe/tools/convert_imageset.cpp`,其核心功能包括图像读取、尺寸调整、灰度转换和数据库写入等操作。通过命令行参数控制不同的转换选项,能够灵活地适应不同的数据预处理需求[^2]。 ### 三级标题:注意事项 - **路径问题**:Windows 系统中路径分隔符建议使用正斜杠 `/` 或双反斜杠 `\\`,以避免路径解析问题。 - **数据格式**:确保标签文件中的每一行包含图像路径和对应的类别标签,路径应与图像根目录相对应。 - **输出格式**:使用 `--backend=lmdb` 指定输出为 LMDB 格式,适用于 Caffe 的训练流程。 - **内存与显存**:虽然 RTX 30 系列显卡具有较大的显存,但生成 LMDB 时主要依赖 CPU 和系统内存,因此确保系统内存充足。 - **验证 LMDB**:生成 LMDB 后,可以使用 `compute_image_mean.cpp` 计算均值文件,以供训练时使用。 ### 三级标题:总结 通过上述命令和参数配置,可以在 Windows 环境下使用 Caffe 的 `convert_imageset.exe` 工具将图像数据集转换为 LMDB 格式,并在此过程中进行灰度化和调整图像尺寸的操作。该方法适用于 RTX 30 系列显卡的深度学习训练需求,确保路径正确、参数合理,并在生成后验证数据格式[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值