【HDU 1247】Hat’s Words(字典树)

本文介绍了一种算法,用于从字典中找出所有由两个现有单词拼接而成的新单词(Hat's Words)。通过构建字典树(Trie)来高效地完成这一任务。

Hat’s Words

Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)

Problem Description

A hat’s word is a word in the dictionary that is the concatenation of exactly two other words in the dictionary.
You are to find all the hat’s words in a dictionary.

Input

Standard input consists of a number of lowercase words, one per line, in alphabetical order. There will be no more than 50,000 words.
Only one case.

Output

Your output should contain all the hat’s words, one per line, in alphabetical order.

Sample Input

a
ahat
hat
hatword
hziee
word

Sample Output

ahat
hatword

题目大意:在你输入的这些单词中,找到那些由已有单词拼接出来的单词。比如有a和hat你就要输出ahat。由于测试样例都是按照字典序我们就降低复杂度不用排序了。

字典树入门:
http://blog.youkuaiyun.com/hguisu/article/details/8131559 http://blog.youkuaiyun.com/thesprit/article/details/52065241

我们创建字典树。将所有输入的单词都放进去。然后再开始这样做:找到一个完整的单词,找到以这个单词为前缀的单词return true否则都返回false。

为了方便对子串的操作,建议使用string以及它的函数substr()。

#include "iostream"
#include "cstdio"
#include "cstring"
#include "algorithm"
#include "malloc.h"

using namespace std;

const int maxn = 1e5+5;
const int MAX = 26;

string s[maxn];

struct Trie{
    int v;
    bool exit;
    Trie *next[MAX];
    Trie(){
        v=0;
        exit = false;
        memset(next,0,sizeof(next));
    }
};

Trie *root = new Trie();

void CreateTrie( string str ){
    Trie *p = root;
    for( int i=0 ; i<str.size() ; i++ ){
        int num = str[i]-'a';
        if( p->next[num] == NULL ) p->next[num] = new Trie();
        p = p->next[num];
    }
    p->exit = true;
}

bool FindTrie( string str ){
    Trie *p = root;
    for( int i=0 ; i<str.size() ; i++ ){
        int num = str[i]-'a';
        if(p->next[num] == NULL) return false;
        p = p->next[num];
    }
    return p->exit;
}

bool FindCombination( string str ){
    Trie *p = root;
    for( int i=0 ; i<str.size() ; i++ ){
        int num = str[i]-'a';
        if(p->next[num] == NULL) return false;
        p = p->next[num];
        if(p->exit && FindTrie(str.substr(i+1))) return true;
    }
    return false;
}

int main(){
    string str;
    int k=0;
    while(cin>>str){
        s[k++] = str;
        CreateTrie(str);
    }
    for( int i=0 ; i<k ; i++ ){
        if(FindCombination(s[i])) cout<<s[i]<<endl;
    }
    return 0;
}
基于可靠性评估序贯蒙特卡洛模拟法的配电网可靠性评估研究(Matlab代码实现)内容概要:本文围绕“基于可靠性评估序贯蒙特卡洛模拟法的配电网可靠性评估研究”,介绍了利用Matlab代码实现配电网可靠性的仿真分析方法。重点采用序贯蒙特卡洛模拟法对配电网进行长时间段的状态抽样与统计,通过模拟系统元件的故障与修复过程,评估配电网的关键可靠性指标,如系统停电频率、停电持续时间、负荷点可靠性等。该方法能够有效处理复杂网络结构与设备时序特性,提升评估精度,适用于含分布式电源、电动汽车等新型负荷接入的现代配电网。文中提供了完整的Matlab实现代码与案例分析,便于复现和扩展应用。; 适合人群:具备电力系统基础知识和Matlab编程能力的高校研究生、科研人员及电力行业技术人员,尤其适合从事配电网规划、运行与可靠性分析相关工作的人员; 使用场景及目标:①掌握序贯蒙特卡洛模拟法在电力系统可靠性评估中的基本原理与实现流程;②学习如何通过Matlab构建配电网仿真模型并进行状态转移模拟;③应用于含新能源接入的复杂配电网可靠性定量评估与优化设计; 阅读建议:建议结合文中提供的Matlab代码逐段调试运行,理解状态抽样、故障判断、修复逻辑及指标统计的具体实现方式,同时可扩展至不同网络结构或加入更多不确定性因素进行深化研究。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值