HDU4786 Fibonacci Tree 解题报告 【图论】【Kruskal】

该博客介绍了如何解决一个关于图论的问题,即在一个包含白色和黑色边的图中,是否存在一种方式构建一棵生成树,使得白色边的数量为斐波那契数。博主通过Kruskal算法进行求解,并提供了相应的代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Problem Description
  Coach Pang is interested in Fibonacci numbers while Uncle Yang wants him to do some research on Spanning Tree. So Coach Pang decides to solve the following problem:
  Consider a bidirectional graph G with N vertices and M edges. All edges are painted into either white or black. Can we find a Spanning Tree with some positive Fibonacci number of white edges?
(Fibonacci number is defined as 1, 2, 3, 5, 8, … )
Input
  The first line of the input contains an integer T, the number of test cases.
  For each test case, the first line contains two integers N(1 <= N <= 105) and M(0 <= M <= 105).
  Then M lines follow, each contains three integers u, v (1 <= u,v <= N, u<> v) and c (0 <= c <= 1), indicating an edge between u and v with a color c (1 for white and 0 for black).
Output
  For each test case, output a line “Case #x: s”. x is the case number and s is either “Yes” or “No” (without quotes) representing the answer to the problem.
Sample Input
2
4 4
1 2 1
2 3 1
3 4 1
1 4 0
5 6
1 2 1
1 3 1
1 4 1
1 5 1
3 5 1
4 2 1
Sample Output
Case #1: Yes
Case #2: No
题解
这道题的题意就是说我们用白色和黑色的边搭起一颗生成树,有无办法让白色的边的边数是斐波那契数。因为我们不知道到底有几条白边,所以我们希望找到这个白边边数的上下界,枚举他的范围,再打一个表记录数据范围以内的斐波那契数,到时候对着表判定就行了。那么怎么去找这个上下界呢?我们也用Kruskal(贪心)的思路,优先选择白边或黑边(排序的时候改一改cmp)就行了。
代码如下:

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=1e5;
int head[N+5],num;
int T;
int n,m;
bool fib[N+5];
int father[N+5];
struct edge
{
    int u,v,w,c;
    int next;
    edge(){next=-1;}
}ed[N*2+5];
void build(int u,int v,int c)
{
    ed[++num].u=u;
    ed[num].v=v;
    ed[num].c=c;
    ed[num].next=head[u];
    head[u]=num;
}
void fi()//打表打出斐波那契数 
{
    memset(fib,false,sizeof(fib));
    int i=1,j=2,k=0;
    fib[1]=fib[2]=true;
    while(k<N)
    {
        k=i+j;
        fib[k]=true;
        i=j,j=k;
    }
}
bool cmp1(edge a,edge b)
{
    return a.c<b.c;
}
bool cmp2(edge a,edge b)
{
    return a.c>b.c;
}
int getfather(int x)
{
    return (father[x]==x)?x:(father[x]=getfather(father[x]));
}
int merge(int x,int y)
{
    return ((x=getfather(x))!=(y=getfather(y)))&&(father[x]=y);
}
int kruskal1()//优先选择黑边,白边最少 
{
    int totw=0,tot=0;
    for(int i=1;i<=n;i++)
    father[i]=i;
    sort(ed+1,ed+1+num,cmp1);
    for(int i=1;i<=num;i++)
    {
        int u=getfather(ed[i].u);
        int v=getfather(ed[i].v);
        if(u!=v)
        {
            if(ed[i].c)totw++;
            merge(u,v);
            tot++;
        }
        if(tot==n-1)return totw;
    }
    return -1;
}
int kruskal2()//优先选择白边,白边最多 
{
    int totw=0,tot=0;
    for(int i=1;i<=n;i++)
    father[i]=i;
    sort(ed+1,ed+1+num,cmp2);
    for(int i=1;i<=num;i++)
    {
        int u=getfather(ed[i].u);
        int v=getfather(ed[i].v);
        if(u!=v)
        {
            if(ed[i].c)totw++;
            merge(u,v);
            tot++;
        }
        if(tot==n-1)return totw;
    }
    return -1;
}
int main()
{
    fi();
    scanf("%d",&T);
    for(int k=1;k<=T;k++)
    {
        memset(head,-1,sizeof(head));
        num=0;
        scanf("%d%d",&n,&m);
        for(int i=1;i<=m;i++)
        {
            int u,v,c;
            scanf("%d%d%d",&u,&v,&c);
            build(u,v,c);
            build(v,u,c);
        }
        int lf=kruskal1(),rg=kruskal2();
        if(lf==-1)//lf和rg都可以 
        {
            printf("Case #%d: No\n",k);
            continue; 
        }
        int flag=0;
        for(int i=lf;i<=rg;i++)
        {
            if(fib[i])
            {
                flag=1;
                break;
            }
        }
        if(flag)printf("Case #%d: Yes\n",k);
        else printf("Case #%d: No\n",k);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值