import statsmodels.tsa.stattools as stat
for i in range(len(dfx.columns)):
# print(dfx.columns[i])
pvalues=stat.adfuller(dfx.values[:,i],1)[1]
if pvalues>0.01:
print(dfx.columns[i],pvalues)
list_big.append(dfx.columns[i])
dfx_change1 = dfx-dfx.shift(1)
dfx_change1=dfx_change1.dropna()
print('=============================================')
for i in range(len(dfx_change1.columns)):
pvalues=stat.adfuller(dfx_change1.values[:,i],1)[1]
if pvalues>0.01:
print(dfx.columns[i],pvalues)
# for i in list_big:
# dfx[i] = dfx[i]-dfx[i].shift(1)
dfx=dfx.diff()
dfx = dfx.dropna()