hdu 1172

主题思想:暴力枚举,对每一个四位数进行判断,是否全部满足猜到的情况。

AC代码:

#include <iostream>
#include<cstdio>
#include<cstring>

using namespace std;
const int maxn=105;

struct Node{

    int a;
    int b; //the number of that a has equal with the dst number
    int c;  //the number in the right position
};

Node node[maxn];
int realNum[5];

int guessNum[5];


bool judge(int real,int j){

    realNum[1]=real/1000;
    realNum[2]=(real%1000)/100;
    realNum[3]=(real%100)/10;
    realNum[4]=(real%10);

    guessNum[1]=node[j].a/1000;
    guessNum[2]=(node[j].a%1000)/100;
    guessNum[3]=(node[j].a%100)/10;
    guessNum[4]=(node[j].a%10);

    int cnt=0;
    for(int i=1;i<=4;i++){

        if(realNum[i]==guessNum[i])cnt++;
    }

    if(cnt!=node[j].c) return false;

    bool mark[5];
    for(int i=1;i<=4;i++) mark[i]=false;

    cnt=0;

    for(int i=1;i<=4;i++){

        for(int j=1;j<=4;j++){

            if(realNum[i]==guessNum[j]&&!mark[j]){

                cnt++;
                mark[j]=true;
                break;  // break to fine the next i
            }
        }
    }

    if(cnt!=node[j].b)return false;

    return true;

}


int main()
{
    int n;
    bool flag=true;
    int cnt=0;
    int ans=0;
    while(scanf("%d",&n)!=EOF){

        if(n==0)break;

        for(int i=1;i<=n;i++){

            scanf("%d%d%d",&node[i].a,&node[i].b,&node[i].c);
        }

        cnt=0;
        ans=0;
        // mei ju
        for(int i=1000;i<=9999;i++){
            flag=true;
            for(int j=1;j<=n;j++){

                if(!judge(i,j)){

                    flag=false;
                    break;
                }

            }
            if(flag){

              cnt++;
              ans=i;
            }

        }

        if(cnt==1){
            printf("%d\n",ans);
        }else{
            printf("Not sure\n");
        }
    }
    return 0;
}
内容概要:本文是一篇关于使用RandLANet模型对SensatUrban数据集进行点云语义分割的实战教程,系统介绍了从环境搭建、数据准备、模型训练与测试到精度评估的完整流程。文章详细说明了在Ubuntu系统下配置TensorFlow 2.2、CUDA及cuDNN等深度学习环境的方法,并指导用户下载和预处理SensatUrban数据集。随后,逐步讲解RandLANet代码的获取与运行方式,包括训练、测试命令的执行与参数含义,以及如何监控训练过程中的关键指标。最后,教程涵盖测试结果分析、向官方平台提交结果、解读评估报告及可视化效果等内容,并针对常见问题提供解决方案。; 适合人群:具备一定深度学习基础,熟悉Python编程和深度学习框架,从事计算机视觉或三维点云相关研究的学生、研究人员及工程师;适合希望动手实践点云语义分割项目的初学者与进阶者。; 使用场景及目标:①掌握RandLANet网络结构及其在点云语义分割任务中的应用;②学会完整部署一个点云分割项目,包括数据处理、模型训练、测试与性能评估;③为参与相关竞赛或科研项目提供技术支撑。; 阅读建议:建议读者结合提供的代码链接和密码访问完整资料,在本地或云端环境中边操作边学习,重点关注数据格式要求与训练参数设置,遇到问题时参考“常见问题与解决技巧”部分及时排查。
内容概要:本文详细介绍了三相异步电机SVPWM-DTC(空间矢量脉宽调制-直接转矩控制)的Simulink仿真实现方法,结合DTC响应快与SVPWM谐波小的优点,构建高性能电机控制系统。文章系统阐述了控制原理,包括定子磁链观测、转矩与磁链误差滞环比较、扇区判断及电压矢量选择,并通过SVPWM技术生成固定频率PWM信号,提升系统稳态性能。同时提供了完整的Simulink建模流程,涵盖电机本体、磁链观测器、误差比较、矢量选择、SVPWM调制、逆变器驱动等模块的搭建与参数设置,给出了仿真调试要点与预期结果,如电流正弦性、转矩响应快、磁链轨迹趋圆等,并提出了模型优化与扩展方向,如改进观测器、自适应滞环、弱磁控制和转速闭环等。; 适合人群:电气工程、自动化及相关专业本科生、研究生,从事电机控制算法开发的工程师,具备一定MATLAB/Simulink和电机控制理论基础的技术人员。; 使用场景及目标:①掌握SVPWM-DTC控制策略的核心原理与实现方式;②在Simulink中独立完成三相异步电机高性能控制系统的建模与仿真;③通过仿真验证控制算法有效性,为实际工程应用提供设计依据。; 阅读建议:学习过程中应结合文中提供的电机参数和模块配置逐步搭建模型,重点关注磁链观测、矢量选择表和SVPWM调制的实现细节,仿真时注意滞环宽度与开关频率的调试,建议配合MATLAB官方工具箱文档进行参数校准与结果分析。
已经博主授权,源码转载自 https://pan.quark.cn/s/bf1e0d5b9490 本文重点阐述了Vue2.0多Tab切换组件的封装实践,详细说明了通过封装Tab切换组件达成多Tab切换功能,从而满足日常应用需求。 知识点1:Vue2.0多Tab切换组件的封装* 借助封装Tab切换组件,达成多Tab切换功能* 支持tab切换、tab定位、tab自动化仿React多Tab实现知识点2:TabItems组件的应用* 在index.vue文件中应用TabItems组件,借助name属性设定tab的标题* 通过:isContTab属性来设定tab的内容* 能够采用子组件作为tab的内容知识点3:TabItems组件的样式* 借助index.less文件来设定TabItems组件的样式* 设定tab的标题样式、背景色彩、边框样式等* 使用animation达成tab的切换动画知识点4:Vue2.0多Tab切换组件的构建* 借助运用Vue2.0框架,达成多Tab切换组件的封装* 使用Vue2.0的组件化理念,达成TabItems组件的封装* 通过运用Vue2.0的指令和绑定机制,达成tab的切换功能知识点5:Vue2.0多Tab切换组件的优势* 达成多Tab切换功能,满足日常应用需求* 支持tab切换、tab定位、tab自动化仿React多Tab实现* 能够满足多样的业务需求,具备良好的扩展性知识点6:Vue2.0多Tab切换组件的应用场景* 能够应用于多样的业务场景,例如:管理系统、电商平台、社交媒体等* 能够满足不同的业务需求,例如:多Tab切换、数据展示、交互式操作等* 能够与其它Vue2.0组件结合运用,达成复杂的业务逻辑Vue2.0多Tab切换组件的封装实例提供了...
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值