When Sasha was studying in the seventh grade, he started listening to music a lot. In order to evaluate which songs he likes more, he introduced the notion of the song's prettiness. The title of the song is a word consisting of uppercase Latin letters. The prettiness of the song is the prettiness of its title.
Let's define the simple prettiness of a word as the ratio of the number of vowels in the word to the number of all letters in the word.
Let's define the prettiness of a word as the sum of simple prettiness of all the substrings of the word.
More formally, let's define the function vowel(c) which is equal to 1, if c is a vowel, and to 0 otherwise. Let si be the i-th character of string s, and si..j be the substring of word s, staring at the i-th character and ending at the j-th character (sisi + 1... sj, i ≤ j).
Then the simple prettiness of s is defined by the formula:

The prettiness of s equals

Find the prettiness of the given song title.
We assume that the vowels are I, E, A, O, U, Y.
The input contains a single string s (1 ≤ |s| ≤ 5·105) — the title of the song.
Print the prettiness of the song with the absolute or relative error of at most 10 - 6.
IEAIAIO
28.0000000
BYOB
5.8333333
YISVOWEL
17.0500000
In the first sample all letters are vowels. The simple prettiness of each substring is 1. The word of length 7 has 28 substrings. So, the prettiness of the song equals to 28.
一开始完全没有思路……但是后来想着想着就出来一个O(N)的。要用到预处理。(假设字符串长度为N) 首先把那些元音字母的位置筛出来。
我的代码中的ai表示(1/1+1/N) + (2/2+2/(N-1)) + ... + (i/i+i/(N-i+1)) bi表示1/1+1/2+1/3+...+1/i (之后我会解释为什么要这样预处理)
每次对于一个元音字母的位置x,无论他在该字符串的前一半还是字符串的后一半,都把他调到前一半的对称位置。(比如说输入的字符串长度为6,我现在要处理的元音字母的位置为5,那么就可以等效成2),然后利用等效之后的这个x生成一个序列,这个序列是分数,长度为N,其中分母为1,2,3,4,...,N,分子为1,2,3,....,x-1,x,x,x,x-1,...,3,2,1(对就是这样的一个序列现在我们要计算这个序列的和),就利用之前预处理出来的a数组和b数组,在O(1)内就可以实现,然后把每次得到的这个和累加起来,结果就是答案。
#include <bits/stdc++.h>
using namespace std;
#define REP(i,n) for(int i(0); i < (n); ++i)
#define rep(i,a,b) for(int i(a); i <= (b); ++i)
#define dec(i,a,b) for(int i(a); i >= (b); --i)
#define for_edge(i,x) for(int i = H[x]; i; i = X[i])
const int N = 600000 + 10;
const int M = 10000 + 10;
const int Q = 1000 + 10;
const int A = 30 + 1;
char s[N];
int len, cnt;
int c[N];
double a[N], b[N];
int l, r;
double ans;
int x;
int main(){
scanf("%s", s + 1);
len = strlen(s + 1); cnt = 0;
l = 0; r = len + 1;
a[0] = b[0] = 0;
rep(i, 1, len) b[i] = b[i - 1] + (double)1 / (double)i;
if (len & 1){
rep(i, 1, len >> 1){
++l, --r;
a[i] = a[i - 1] + i / (double)l + i / (double)r;
}
a[len / 2 + 1] = a[len / 2] + (++l) / (len / 2 + 1);
}
else{
rep(i, 1, len >> 1){
++l, --r;
a[i] = a[i - 1] + i / (double)l + i / (double)r;
}
}
rep(i, 1, len){
if (s[i] == 'A' || s[i] == 'E' || s[i] == 'I' || s[i] == 'O' || s[i] == 'U' || s[i] == 'Y'){
c[++cnt] = i;
}
}
ans = 0;
rep(i, 1, cnt){
x = c[i];
if (x > len / 2) x = len - x + 1;
if (x <= len / 2) ans += a[x] + (b[len - x] - b[x]) * x;
else ans += a[x];
}
printf("%.7f\n", ans);
return 0;
}