Codility5 FrogRiverOne

解决一个有趣的问题:一只小蛙如何能最快地跳到河的对面。通过跟踪树叶落在河中不同位置的时间来确定最早何时所有必要的位置都有树叶覆盖。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Task description

A small frog wants to get to the other side of a river. The frog is currently located at position 0, and wants to get to position X. Leaves fall from a tree onto the surface of the river.

You are given a non-empty zero-indexed array A consisting of N integers representing the falling leaves. A[K] represents the position where one leaf falls at time K, measured in minutes.

The goal is to find the earliest time when the frog can jump to the other side of the river. The frog can cross only when leaves appear at every position across the river from 1 to X.

For example, you are given integer X = 5 and array A such that:

  A[0] = 1
  A[1] = 3
  A[2] = 1
  A[3] = 4
  A[4] = 2
  A[5] = 3
  A[6] = 5
  A[7] = 4

In minute 6, a leaf falls into position 5. This is the earliest time when leaves appear in every position across the river.

Write a function:

int solution(int X, vector<int> &A);

that, given a non-empty zero-indexed array A consisting of N integers and integer X, returns the earliest time when the frog can jump to the other side of the river.

If the frog is never able to jump to the other side of the river, the function should return −1.

For example, given X = 5 and array A such that:

  A[0] = 1
  A[1] = 3
  A[2] = 1
  A[3] = 4
  A[4] = 2
  A[5] = 3
  A[6] = 5
  A[7] = 4

the function should return 6, as explained above. Assume that:

  • N and X are integers within the range [1..100,000];
  • each element of array A is an integer within the range [1..X].

Complexity:

  • expected worst-case time complexity is O(N);
  • expected worst-case space complexity is O(X), beyond input storage (not counting the storage required for input arguments).

Elements of input arrays can be modified.


Solution

//CaptainMay AllRights Reserved
int solution2(int X, vector<int> &A) 
{
    // write your code in C++11
    int n = A.size();
    int* hash = new int[X];
    memset(hash, 0, 4*X);
    int flag = X;

    for (int i = 0; i < n; ++i)
    {
        int temp = A[i] % (X + 1);

        if (*(hash + temp - 1) == 0) //核心在这里。需要在O(n)时间复杂度内,知道是否填满了hash数组,
            --flag;                  //最好的办法就是设定一个Flag,每填入一个新的数字,就将flag减一

        if (!flag)
            return i;

        ++*(hash + temp - 1);
    }

    for(int i = 0; i < X; ++i)       //这里判断一下,若hash数组里有任何一位为0。即表明没有填满。
        if (*(hash + i) == 0)
            return -1;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值