腾讯混元首款开源混合推理MoE模型发布,性能优异,激活参数仅13B

6月27日,我们正式带来腾讯混元首个开源的混合推理MoE模型 「Hunyuan-A13B」,总参数80B,激活参数仅13B,效果比肩同等架构领先开源模型,但是推理速度更快,性价比更高。这意味着,开发者可以用更低门槛的方式获得更好的模型能力。

即日起,模型已经在 Github 和 Huggingface 等开源社区上线,同时模型API也在腾讯云官网正式上线,支持快速接入部署。

这是业界首个 13B 级别的MoE开源混合推理模型,基于先进的模型架构,Hunyuan-A13B表现出强大的通用能力,在多个业内权威数据测试集上获得好成绩,并且在Agent工具调用和长文能力上有突出表现。

图片

*加粗为最高分,下划线表示第二名,数据来源于模型各个公开的测试数据集得分 

对于时下热门的大模型Agent能力,腾讯混元建设了一套多Agent数据合成框架,接入了MCP、沙箱、大语言模型模拟等多样的环境,并且通过强化学习让Agent在多种环境里进行自主探索与学习,进一步提升了Hunyuan-A13B的效果。

如视频展示,Hunyuan-A13B可以根据用户的指令,通过调用搜索、酒店、天气等查询工具,提供定制化的旅行行程规划,完成深度搜索。

在数据分析场景下,模型通过调用编码工具,完成数据分析的工作,并支持生成新的excel表格文件。

在长文方面,Hunyuan-A13B支持256K原生上下文窗口,在多个长文数据集中取得了优异的成绩。

图片

图片

实际使用场景中,Hunyuan-A13B模型可以根据需要选择思考模式,快思考模式提供简洁、高效的输出,适合追求速度和最小计算开销的简单任务;慢思考涉及更深、更全面的推理步骤,如反思和回溯。这种融合推理模式优化了计算资源分配,使用户能够通过加think/no_think切换思考模式,在效率和特定任务准确性之间取得平衡。

图片

Hunyuan-A13B模型对个人开发者较为友好,在严格条件下,只需要1张中低端GPU卡即可部署。目前,Hunyuan-A13B已经融入开源主流推理框架生态,无损支持多种量化格式,在相同输入输出规模上,整体吞吐是前沿开源模型的2倍以上。

Hunyuan-A13B 集合了腾讯混元在模型预训练、后训练等多个环节的创新技术,这些技术共同增强了其推理性能、灵活性和推理效率。

  • 预训练环节,Hunyuan-A13B 训练了20T tokens的语料,覆盖了多个领域。高质量的语料显著提升了模型通用能力。此外,在模型架构上,腾讯混元团队通过系统性分析,建模与验证,构建了适用于 MoE 架构的 Scaling Law 联合公式。这一发现完善了MoE 架构的 Scaling Law 理论体系,并为 MoE 架构设计提供了可量化的工程化指导,也极大地提升了模型预训练的效果。

  • 后训练环节,Hunyuan-A13B采用了多阶段的训练方式,提升了模型的推理能力,同时兼顾了模型创作、理解、Agent等通用能力。

图片图:Hunyuan-A13B后训练四个步骤

为更好的提升大语言模型能力,腾讯混元也开源了两个新的数据集,以填补行业内相关评估标准的空白。其中,ArtifactsBench用于弥合大语言模型代码生成评估中的视觉与交互鸿沟,构建了一个包含 1825个任务的新基准,涵盖了从网页开发、数据可视化到交互式游戏等九大领域,并按难度分级以全面评估模型的能力;C3-Bench针对Agent场景模型面临的三个关键挑战:规划复杂的工具关系、处理关键的隐藏信息以及动态路径决策,设计了1024条测试数据,以发现模型能力的不足。

Hunyuan-A13B模型是腾讯内部应用和调用量最大的大语言模型之一,有超过 400+ 业务用于精调或者直接调用,日均请求超1.3亿。本次进行升级更新并对外开源 ,是继混元large后混元大语言模型推出的又一重要开源模型,参数更小,但是性能和效果实现了大幅的提升。接下来,腾讯混元也将推出更多尺寸、更多特色的模型,将更多实践技术与社区共享,促进大模型开源生态的繁荣。

腾讯混元坚定拥抱开源,持续推进多尺寸、多场景的全系模型开源,旗下图像、视频、3D、文本等多种模态基础模型已全面开源。未来,混元计划推出多尺寸混合推理模型,从0.5B到32B的dense模型,以及多个MoE模型,适配企业与端侧不同需求,混元图像、视频、3D等多模态基础模型及配套插件模型也将持续开源。

图片

附项目相关链接

  • 体验入口:https://hunyuan.tencent.com/

  • API地址:https://cloud.tencent.com/product/tclm

  • Github :https://github.com/Tencent-Hunyuan

  • HuggingFace:https://huggingface.co/tencent

  • C3-Bench:https://github.com/Tencent-Hunyuan/C3-Benchmark 

  • ArtifactsBench:https://github.com/Tencent-Hunyuan/ArtifactsBenchmark

关注腾讯开源公众号

获取更多最新腾讯官方开源信息!

加入微信群即可了解更多“腾讯开源新动态”

图片

【2025年10月最新优化算法】混沌增强领导者黏菌算法(Matlab代码实现)内容概要:本文档介绍了2025年10月最新提出的混沌增强领导者黏菌算法(Matlab代码实现),属于智能优化算法领域的一项前沿研究。该算法结合混沌机制与黏菌优化算法,通过引入领导者策略提升搜索效率和全局寻优能力,适用于复杂工程优化问题的求解。文档不提供完整的Matlab实现代码,还涵盖了算法原理、性能验证及与其他优化算法的对比分析,体现了较强的科研复现性和应用拓展性。此外,文中列举了大量相关科研方向和技术应用场景,展示其在微电网调度、路径规划、图像处理、信号分析、电力系统优化等多个领域的广泛应用潜力。; 适合人群:具备一定编程基础和优化理论知识,从事科研工作的研究生、博士生及高校教师,尤其是关注智能优化算法及其在工程领域应用的研发人员;熟悉Matlab编程环境者更佳。; 使用场景及目标:①用于解决复杂的连续空间优化问题,如函数优化、参数辨识、工程设计等;②作为新型元启发式算法的学习与教学案例;③支持高水平论文复现与算法改进创新,推动在微电网、无人机路径规划、电力系统等实际系统中的集成应用; 其他说明:资源包含完整Matlab代码和复现指导,建议结合具体应用场景进行调试与拓展,鼓励在此基础上开展算法融合与性能优化研究。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值