2019 ACM-ICPC North America Qualification Contest B Diagonal Cut

探讨了如何通过数学公式确定对角线将矩形精确分成两半的小矩形单位数量,涉及坐标几何和最大公约数算法。

题意

给一个由m∗nm*nmn1∗11*111的小矩形组成的长为m,宽为n的大矩形,连接其一条对角线,求被对角线一分为二的小矩形的个数

思路

img

首先画个图,对角线方程为y=NMy=\frac{N}{M}y=MN,设正方形左下角点坐标为(p,q)(p,q)pq,则正方形中心(p+12,q+12)(p+\frac{1}{2},q+\frac{1}{2})p+21,q+21,当对角线过正方形中心时,正方形面积被分为两个相等的部分,由此可列出方程:

(p+12)∗NM=q+12(0<=p<M,0<=q<N)(p+\frac{1}{2})*\frac{N}{M}=q+\frac{1}{2}(0<=p<M,0<=q<N)(p+21)MN=q+210<=p<M,0<=q<N 求p,q解的组数

其中N可写为n∗gcd(M,N)n*gcd(M,N)ngcd(M,N),同理M可写为m∗gcd(M,N)m*gcd(M,N)mgcd(M,N)

方程可化为:

(2p+1)∗nm=2q+1(0<=p<M,0<=q<N)(2p+1)*\frac{n}{m}=2q+1(0<=p<M,0<=q<N)(2p+1)mn=2q+10<=p<M0<=q<N

显然2p+12p+12p+12q+12q+12q+1为奇数,所以m,n均为奇数时才有解,解释如下:

(1)若n为奇,m为偶(2p+1)∗nm(2p+1)*\frac{n}{m}(2p+1)mn必为小数,2q+12q+12q+1为整数,无解;

(2))若n为奇,m为奇(2p+1)∗nm(2p+1)*\frac{n}{m}(2p+1)mn可能为整数,2q+12q+12q+1为整数,可能有解;

(3)若n为偶,m为偶(2p+1)∗nm(2p+1)*\frac{n}{m}(2p+1)mn必为小数,2q+12q+12q+1为整数,无解;

(4)若n为偶,m为奇(2p+1)∗nm(2p+1)*\frac{n}{m}(2p+1)mn若为整数,则是偶数,2q+12q+12q+1为奇数,无解;

方程再化为

2p+1m=2q+1n(1<=2p+1<2M+1,1<=2q+1<2N+1)\frac{2p+1}{m}=\frac{2q+1}{n}(1<=2p+1<2M+1,1<=2q+1<2N+1)m2p+1=n2q+11<=2p+1<2M+11<=2q+1<2N+1

(1<=2p+1<2M+1,1<=2q+1<2N+1)(1<=2p+1<2M+1,1<=2q+1<2N+1)1<=2p+1<2M+11<=2q+1<2N+1可改写为(m<=2p+1<=2mgcd(M,N),n<=2q+1<=2ngcd(M,N))(m<=2p+1<=2mgcd(M,N),n<=2q+1<=2ngcd(M,N))m<=2p+1<=2mgcd(M,N)n<=2q+1<=2ngcd(M,N)
方程解如下:

pq
(m−1)/2(m-1)/2(m1)/2(n−1)/2(n-1)/2(n1)/2
(3m−1)/2(3m-1)/2(3m1)/2(3n−1)/2(3n-1)/2(3n1)/2
(5m−1)/2(5m-1)/2(5m1)/2(5n−1)/2(5n-1)/2(5n1)/2
(2gcd(M,N)−1)∗m−1)/2(2gcd(M,N)-1)*m-1)/2(2gcd(M,N)1)m1)/2((2gcd(M,N)−1)∗n−1)/2((2gcd(M,N)-1)*n-1)/2((2gcd(M,N)1)n1)/2
endend

一共gcd(M,N)gcd(M,N)gcd(M,N)个解

代码

#include<bits/stdc++.h>
using namespace std;
#define ll long long
ll gcd(ll m,ll n)
{
    ll a=m,b=n;
    if(n>m)
    {
        swap(m,n);
    }
    while(m%n)
    {
        ll k=n;
        n=m%n;
        m=k;
    }
    a/=n;
    b/=n;
    return (a&1&&b&1)?n:0;
}

int main()
{
    ll m,n;
    cin>>m>>n;
    ll g=gcd(m,n);
    cout<<g<<endl;
    return 0;
}
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值