题意
给一个由m∗nm*nm∗n个1∗11*11∗1的小矩形组成的长为m,宽为n的大矩形,连接其一条对角线,求被对角线一分为二的小矩形的个数
思路

首先画个图,对角线方程为y=NMy=\frac{N}{M}y=MN,设正方形左下角点坐标为(p,q)(p,q)(p,q),则正方形中心(p+12,q+12)(p+\frac{1}{2},q+\frac{1}{2})(p+21,q+21),当对角线过正方形中心时,正方形面积被分为两个相等的部分,由此可列出方程:
(p+12)∗NM=q+12(0<=p<M,0<=q<N)(p+\frac{1}{2})*\frac{N}{M}=q+\frac{1}{2}(0<=p<M,0<=q<N)(p+21)∗MN=q+21(0<=p<M,0<=q<N) 求p,q解的组数
其中N可写为n∗gcd(M,N)n*gcd(M,N)n∗gcd(M,N),同理M可写为m∗gcd(M,N)m*gcd(M,N)m∗gcd(M,N)
方程可化为:
(2p+1)∗nm=2q+1(0<=p<M,0<=q<N)(2p+1)*\frac{n}{m}=2q+1(0<=p<M,0<=q<N)(2p+1)∗mn=2q+1(0<=p<M,0<=q<N)
显然2p+12p+12p+1和2q+12q+12q+1为奇数,所以m,n均为奇数时才有解,解释如下:
(1)若n为奇,m为偶(2p+1)∗nm(2p+1)*\frac{n}{m}(2p+1)∗mn必为小数,2q+12q+12q+1为整数,无解;
(2))若n为奇,m为奇(2p+1)∗nm(2p+1)*\frac{n}{m}(2p+1)∗mn可能为整数,2q+12q+12q+1为整数,可能有解;
(3)若n为偶,m为偶(2p+1)∗nm(2p+1)*\frac{n}{m}(2p+1)∗mn必为小数,2q+12q+12q+1为整数,无解;
(4)若n为偶,m为奇(2p+1)∗nm(2p+1)*\frac{n}{m}(2p+1)∗mn若为整数,则是偶数,2q+12q+12q+1为奇数,无解;
方程再化为
2p+1m=2q+1n(1<=2p+1<2M+1,1<=2q+1<2N+1)\frac{2p+1}{m}=\frac{2q+1}{n}(1<=2p+1<2M+1,1<=2q+1<2N+1)m2p+1=n2q+1(1<=2p+1<2M+1,1<=2q+1<2N+1)
(1<=2p+1<2M+1,1<=2q+1<2N+1)(1<=2p+1<2M+1,1<=2q+1<2N+1)(1<=2p+1<2M+1,1<=2q+1<2N+1)可改写为(m<=2p+1<=2mgcd(M,N),n<=2q+1<=2ngcd(M,N))(m<=2p+1<=2mgcd(M,N),n<=2q+1<=2ngcd(M,N))(m<=2p+1<=2mgcd(M,N),n<=2q+1<=2ngcd(M,N))
方程解如下:
| p | q |
|---|---|
| (m−1)/2(m-1)/2(m−1)/2 | (n−1)/2(n-1)/2(n−1)/2 |
| (3m−1)/2(3m-1)/2(3m−1)/2 | (3n−1)/2(3n-1)/2(3n−1)/2 |
| (5m−1)/2(5m-1)/2(5m−1)/2 | (5n−1)/2(5n-1)/2(5n−1)/2 |
| … | … |
| (2gcd(M,N)−1)∗m−1)/2(2gcd(M,N)-1)*m-1)/2(2gcd(M,N)−1)∗m−1)/2 | ((2gcd(M,N)−1)∗n−1)/2((2gcd(M,N)-1)*n-1)/2((2gcd(M,N)−1)∗n−1)/2 |
| end | end |
一共gcd(M,N)gcd(M,N)gcd(M,N)个解
代码
#include<bits/stdc++.h>
using namespace std;
#define ll long long
ll gcd(ll m,ll n)
{
ll a=m,b=n;
if(n>m)
{
swap(m,n);
}
while(m%n)
{
ll k=n;
n=m%n;
m=k;
}
a/=n;
b/=n;
return (a&1&&b&1)?n:0;
}
int main()
{
ll m,n;
cin>>m>>n;
ll g=gcd(m,n);
cout<<g<<endl;
return 0;
}
探讨了如何通过数学公式确定对角线将矩形精确分成两半的小矩形单位数量,涉及坐标几何和最大公约数算法。
457

被折叠的 条评论
为什么被折叠?



