洛谷B2137判决素数个数

文章讲述了如何使用C++编写程序,修正了输入参数顺序问题,以计算给定整数区间X和Y之间的素数个数,包括X和Y本身。通过检查算法和边界条件,确保正确性。

题目描述

求 X,Y 之间的素数个数(包括 X 和 Y)。

输入格式

两个整数 X 和 Y(1≤X,Y≤1.1×106)。

输出格式

输出一个整数,表示 X,Y 之间的素数个数(包括 X 和 Y)。

思路

和B2128一样,只是初始值不一样

#include<iostream>
#include<cmath>
using namespace std;
bool an(long long num){
    if(num==1) return false;
    if(num==2) return true;
    for(int j=2;j<=sqrt(num);j++){
        if(num%j==0) return false;
    }
    return true;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              
}
int main(){
    long long a,b,c=0;
    cin>>a>>b;
    for(int i=a;i<=b;i++){
    	if(an(i)){
    		c++;
		}
	}
    cout<<c<<endl;
    return 0;
}

(先别急着复制)

 别问我咋知道的

分析

1、首先排除自定义函数的错(毕竟一直用这个函数,不可能错)

2、其次排除算法的错。

3、有可能a和b是反着来

结论

因此,可能样例是倒着来的

#include<iostream>
#include<cmath>
#include<algorithm>
using namespace std;
bool an(long long num){
    if(num==1) return false;
    if(num==2) return true;
    for(int j=2;j<=sqrt(num);j++){
        if(num%j==0) return false;
    }
    return true;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              
}
int main(){
    long long a,b,c=0;
    cin>>a>>b;
    if(a>b)swap(a,b);//如果a>b,那么交换值
    for(int i=a;i<=b;i++){
    	if(an(i)){
    		c++;
		}
	}
    cout<<c<<endl;
    return 0;
}

END

P3912是计算1到n之间素数个数的题目,以下是几种常见的解题方法: ### 暴力枚举法 对每个数进行检查,查看它是否为素数,若为素数则对计数器进行累加。 ```cpp #include <iostream> using namespace std; bool isPrime(int num) { if (num < 2) return false; for (int i = 2; i < num; i++) { if (num % i == 0) { return false; } } return true; } int main() { int n; cin >> n; int count = 0; for (int i = 2; i <= n; i++) { if (isPrime(i)) { count++; } } cout << count << endl; return 0; } ``` ### 埃氏筛法 此方法的核心思想是先假定所有数都是素数,接着把素数的倍数标记为合数,最后统计素数的数量。 ```cpp #include <iostream> #include <bitset> #include <cmath> using namespace std; const int maxn = 1e6 + 10; bitset <maxn> pri; // 1:合数 0:素数 int isprime(int n) { for (int i = 2; i <= n / i; i++) { if (n % i == 0) { return 0; } } return 1; } int main() { long long n; cin >> n; int cnt = 0; for (int i = 2; i <= sqrt(n); i++) { if (isprime(i)) { for (int j = 2 * i; j <= n; j += i) pri[j] = 1; } } for (int i = 2; i <= n; i++) { if (!pri[i]) { cnt++; } } cout << cnt << endl; return 0; } ``` ### 欧拉筛法 欧拉筛法是一种线性筛法,能避免埃氏筛法的重复标记问题。 ```cpp #include <iostream> #include <vector> using namespace std; const int maxn = 1e8 + 10; bool isPrime[maxn]; vector<int> primes; void eulerSieve(int n) { for (int i = 2; i <= n; i++) { if (!isPrime[i]) { primes.push_back(i); } for (int j = 0; j < primes.size() && i * primes[j] <= n; j++) { isPrime[i * primes[j]] = true; if (i % primes[j] == 0) { break; } } } } int main() { int n; cin >> n; eulerSieve(n); cout << primes.size() << endl; return 0; } ```
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值