Problem Description
There is a pile of n wooden sticks. The length and weight of each stick are known in advance. The sticks are to be processed by a woodworking machine in one by one fashion. It needs some time, called setup time, for the machine to prepare processing a
stick. The setup times are associated with cleaning operations and changing tools and shapes in the machine. The setup times of the woodworking machine are given as follows:
(a) The setup time for the first wooden stick is 1 minute.
(b) Right after processing a stick of length l and weight w , the machine will need no setup time for a stick of length l' and weight w' if l<=l' and w<=w'. Otherwise, it will need 1 minute for setup.
(b) Right after processing a stick of length l and weight w , the machine will need no setup time for a stick of length l' and weight w' if l<=l' and w<=w'. Otherwise, it will need 1 minute for setup.
You are to find the minimum setup time to process a given pile of n wooden sticks. For example, if you have five sticks whose pairs of length and weight are (4,9), (5,2), (2,1), (3,5), and (1,4), then the minimum setup time should be 2 minutes since there
is a sequence of pairs (1,4), (3,5), (4,9), (2,1), (5,2).
Input
The input consists of T test cases. The number of test cases (T) is given in the first line of the input file. Each test case consists of two lines: The first line has an integer n , 1<=n<=5000, that represents the number of wooden sticks in the test case,
and the second line contains n 2 positive integers l1, w1, l2, w2, ..., ln, wn, each of magnitude at most 10000 , where li and wi are the length and weight of the i th wooden stick, respectively. The 2n integers are delimited by one or more spaces.
Output
The output should contain the minimum setup time in minutes, one per line.
Sample Input
3
5
4 9 5 2 2 1 3 5 1 4
3
2 2 1 1 2 2
3
1 3 2 2 3 1
5
4 9 5 2 2 1 3 5 1 4
3
2 2 1 1 2 2
3
1 3 2 2 3 1
Sample Output
2
1
3
1
3
简单题意:
有一堆木棍需要处理,事先已经知道了他们的长度和重量。木棍处理机器需要为第一根木棍留下1min的设置时间,然后其他的木棍如果长度比第一根大并且重量也比第一根重,那么机器将不需要设置时间。否则,需要重新开始设置,耗费1min的设置时间。编写一个程序,使得处理完这批木棍的时间最短。
解题思路形成过程:
这是典型的贪心算法,并不难。和Problem A一样,我拿到题目就想,分批次完成,使用迭代。虽然Problem A没成功,但是思想肯定没有错误。
感想:
对于这个题,我想说的太多了。ACM不只是考思路,像这个题目,我有两种AC 代码。但是开始一直Runtime Error,最后查明白了是数组界限的问题。提交20次,这个经验教训,我想,很难忘记了。然后就是Time limit Exceeded,真是怎么提交怎么不对。最后,是输入,不能使用while(cin>>n),题目也说的不是很明白,只是测试一组数据。下面附上两种AC代码。
AC代码:
#include <iostream>
#include <cstdio>
#include <algorithm>
using namespace std;
struct stick
{
int l;
int w;
};
bool cmp(const stick &a,const stick &b)
{
if(a.l<=b.l)return true;//所有的数据从小到大排序
return false;
}
void greedy_select(int n,stick a[],bool b[])
{
b[1]=true;
int preEnd=1;
for(int i=2;i<=n;i++)
{
if(a[i].l>=a[preEnd].l&&a[i].w>=a[preEnd].w)
{
b[i]=true;
preEnd=i;
}
else b[i]=false;
}
}
int main()
{
int n,stickNum;
stick s[5001];
bool f[5001];
scanf("%d",&n);
{
for(int k=0;k<n;k++)
{
scanf("%d",&stickNum);
for(int i=1;i<=stickNum;i++)
{
scanf("%d %d",&s[i].l,&s[i].w);
}
sort(s+1,s+stickNum+1,cmp);
int sum=0;
while(stickNum!=0)
{
greedy_select(stickNum,s,f);
int j=1,total=0;
for(int i=1;i<=stickNum;i++)
{
if(f[i]==true){total++;}
else
{
s[j]=s[i];
//cout<<"j:"<<j<<endl;
j++;
}
}
//cout<<"total:"<<total<<endl;
sum++;
stickNum-=total;
}
#include <cstdio>
#include <algorithm>
using namespace std;
struct stick
{
int l;
int w;
};
bool cmp(const stick &a,const stick &b)
{
if(a.l<=b.l)return true;//所有的数据从小到大排序
return false;
}
void greedy_select(int n,stick a[],bool b[])
{
b[1]=true;
int preEnd=1;
for(int i=2;i<=n;i++)
{
if(a[i].l>=a[preEnd].l&&a[i].w>=a[preEnd].w)
{
b[i]=true;
preEnd=i;
}
else b[i]=false;
}
}
int main()
{
int n,stickNum;
stick s[5001];
bool f[5001];
scanf("%d",&n);
{
for(int k=0;k<n;k++)
{
scanf("%d",&stickNum);
for(int i=1;i<=stickNum;i++)
{
scanf("%d %d",&s[i].l,&s[i].w);
}
sort(s+1,s+stickNum+1,cmp);
int sum=0;
while(stickNum!=0)
{
greedy_select(stickNum,s,f);
int j=1,total=0;
for(int i=1;i<=stickNum;i++)
{
if(f[i]==true){total++;}
else
{
s[j]=s[i];
//cout<<"j:"<<j<<endl;
j++;
}
}
//cout<<"total:"<<total<<endl;
sum++;
stickNum-=total;
}
printf("%d\n",sum);
}
}
return 0;
}
}
}
return 0;
}
第二种:
#include <iostream>
#include <cstdio>
#include <algorithm>
using namespace std;
struct stick
{
int l;
int w;
};
bool cmp(const stick &a,const stick &b)
{
if(a.l<=b.l)return true;//所有的数据从小到大排序
return false;
}
void greedy_select(int n,stick a[],bool b[])
{
b[1]=true;
int preEnd=1;
for(int i=2;i<=n;i++)
{
if(a[i].w<a[preEnd].w)
{
b[i]=true;
preEnd=i;
}
else b[i]=false;
}
}
int main()
{
int n,stickNum;
stick s[5001];
bool f[5001];
scanf("%d",&n);
{
for(int k=0;k<n;k++)
{
scanf("%d",&stickNum);
for(int i=1;i<=stickNum;i++)
{
scanf("%d %d",&s[i].l,&s[i].w);
}
sort(s+1,s+stickNum+1,cmp);
greedy_select(stickNum,s,f);
int total=0;
for(int i=1;i<=stickNum;i++)
if(f[i])total++;
printf("%d\n",total);
}
}
return 0;
}
#include <cstdio>
#include <algorithm>
using namespace std;
struct stick
{
int l;
int w;
};
bool cmp(const stick &a,const stick &b)
{
if(a.l<=b.l)return true;//所有的数据从小到大排序
return false;
}
void greedy_select(int n,stick a[],bool b[])
{
b[1]=true;
int preEnd=1;
for(int i=2;i<=n;i++)
{
if(a[i].w<a[preEnd].w)
{
b[i]=true;
preEnd=i;
}
else b[i]=false;
}
}
int main()
{
int n,stickNum;
stick s[5001];
bool f[5001];
scanf("%d",&n);
{
for(int k=0;k<n;k++)
{
scanf("%d",&stickNum);
for(int i=1;i<=stickNum;i++)
{
scanf("%d %d",&s[i].l,&s[i].w);
}
sort(s+1,s+stickNum+1,cmp);
greedy_select(stickNum,s,f);
int total=0;
for(int i=1;i<=stickNum;i++)
if(f[i])total++;
printf("%d\n",total);
}
}
return 0;
}
本文介绍了一种通过贪心算法解决木棍加工调度问题的方法,旨在寻找最优的木棍加工顺序,以最小化机器的准备时间。
2756

被折叠的 条评论
为什么被折叠?



