前置知识:简单的无理函数的不定积分
习题
题1: 计算 ∫ x 1 + x 1 − x d x \int x\sqrt{\dfrac{1+x}{1-x}}dx ∫x1−x1+xdx
解:
\qquad
令
t
=
1
+
x
1
−
x
t=\sqrt{\dfrac{1+x}{1-x}}
t=1−x1+x,则
x
=
t
2
−
1
t
2
+
1
x=\dfrac{t^2-1}{t^2+1}
x=t2+1t2−1,
d
x
=
4
t
(
t
2
+
1
)
2
d
t
dx=\dfrac{4t}{(t^2+1)^2}dt
dx=(t2+1)24tdt,于是
\qquad 原式 = ∫ t 2 − 1 t 2 + 1 ⋅ t ⋅ 4 t ( t 2 + 1 ) 2 d t = ∫ 4 t 4 − 4 t 2 ( t 2 + 1 ) 3 d t =\int \dfrac{t^2-1}{t^2+1}\cdot t\cdot \dfrac{4t}{(t^2+1)^2}dt=\int\dfrac{4t^4-4t^2}{(t^2+1)^3}dt =∫t2+1t2−1⋅t⋅(t2+1)24tdt=∫(t2+1)34t4−4t2dt
= ∫ [ 4 t 2 + 1 − 12 ( t 2 + 1 ) 2 + 8 ( t 2 + 1 ) 3 ] d t \qquad\qquad =\int[\dfrac{4}{t^2+1}-\dfrac{12}{(t^2+1)^2}+\dfrac{8}{(t^2+1)^3}]dt =∫[t2+14−(t2+1)212+(t2+1)38]dt
= 4 arctan t − 12 × 1 2 ( t t 2 + 1 + arctan t ) + 8 × 1 4 [ t ( t 2 + 1 ) 2 + 3 2 ( t t 2 + 1 + arctan t ) ] + C \qquad\qquad =4\arctan t-12\times \dfrac 12(\dfrac{t}{t^2+1}+\arctan t)+8\times\dfrac 14[\dfrac{t}{(t^2+1)^2}+\dfrac 32(\dfrac{t}{t^2+1}+\arctan t)]+C =4arctant−12×21(t2+1t+arctant)+8×41[(t2+1)2t+23(t2+1t+arctant)]+C
= arctan t − 3 t t 2 + 1 + 2 t ( t 2 + 1 ) 2 \qquad\qquad =\arctan t-\dfrac{3t}{t^2+1}+\dfrac{2t}{(t^2+1)^2} =arctant−t2+13t+(t2+1)22t
= arctan ( 1 + x 1 − x ) − 3 ( 1 − x ) ( 1 + x ) 2 + ( 1 − x ) ( 1 − x ) ( 1 + x ) 2 + C \qquad\qquad =\arctan(\sqrt{\dfrac{1+x}{1-x}})-\dfrac{3\sqrt{(1-x)(1+x)}}{2}+\dfrac{(1-x)\sqrt{(1-x)(1+x)}}{2}+C =arctan(1−x1+x)−23(1−x)(1+x)+2(1−x)(1−x)(1+x)+C
题2: 计算 ∫ x x 4 + 2 x 2 − 1 d x \int x\sqrt{x^4+2x^2-1}dx ∫xx4+2x2−1dx
解:
\qquad
令
x
2
+
1
=
2
sec
t
x^2+1=\sqrt 2\sec t
x2+1=2sect,则
x
4
+
2
x
2
−
1
=
2
sec
2
t
−
2
=
2
tan
t
\sqrt{x^4+2x^2-1}=\sqrt{2\sec^2 t-2}=\sqrt 2\tan t
x4+2x2−1=2sec2t−2=2tant,
d
(
x
2
)
=
2
sec
t
⋅
tan
t
d
t
d(x^2)=\sqrt 2\sec t\cdot \tan tdt
d(x2)=2sect⋅tantdt
\qquad 原式 = 1 2 ∫ x 4 + 2 x 2 − 1 d ( x 2 ) = ∫ tan t ⋅ sec t ⋅ tan t d t =\dfrac 12\int \sqrt{x^4+2x^2-1}d(x^2)=\int\tan t\cdot \sec t\cdot \tan tdt =21∫x4+2x2−1d(x2)=∫tant⋅sect⋅tantdt
= ∫ tan 2 t ⋅ sec t d t = tan t sec t − ∫ sec 3 t d t \qquad\qquad =\int \tan^2 t\cdot \sec tdt=\tan t\sec t-\int \sec^3tdt =∫tan2t⋅sectdt=tantsect−∫sec3tdt
= 2 2 tan t sec t − 2 2 ∫ 1 cos 3 t d t \qquad\qquad =\dfrac{\sqrt 2}{2}\tan t\sec t-\dfrac{\sqrt 2}{2}\int \dfrac{1}{\cos^3 t}dt =22tantsect−22∫cos3t1dt
其中 ∫ 1 cos 3 t d t = ∫ cos t cos 4 t d t = ∫ 1 ( 1 − sin 2 t ) 2 d ( sin t ) = 1 4 ∫ ( 1 1 − sin t + 1 1 + sin t ) 2 d ( sin t ) \int \dfrac{1}{\cos^3 t}dt=\int \dfrac{\cos t}{\cos^4 t}dt=\int \dfrac{1}{(1-\sin^2 t)^2}d(\sin t)=\dfrac 14\int(\dfrac{1}{1-\sin t}+\dfrac{1}{1+\sin t})^2d(\sin t) ∫cos3t1dt=∫cos4tcostdt=∫(1−sin2t)21d(sint)=41∫(1−sint1+1+sint1)2d(sint)
= 1 4 ∫ [ 1 ( 1 − sin t ) 2 + 1 ( 1 + sin t ) 2 − 2 ( 1 − sin t ) ( 1 + sin t ) ] d t \qquad\qquad\qquad \ =\dfrac 14\int[\dfrac{1}{(1-\sin t)^2}+\dfrac{1}{(1+\sin t)^2}-\dfrac{2}{(1-\sin t)(1+\sin t)}]dt =41∫[(1−sint)21+(1+sint)21−(1−sint)(1+sint)2]dt
= 1 4 [ 1 1 − sin t − 1 1 + sin t − ln ( 1 − sin t ) + ln ( 1 + sin t ) ] + C \qquad\qquad\qquad \ =\dfrac 14[\dfrac{1}{1-\sin t}-\dfrac{1}{1+\sin t}-\ln(1-\sin t)+\ln(1+\sin t)]+C =41[1−sint1−1+sint1−ln(1−sint)+ln(1+sint)]+C
所以原式 = tan t sec t − 1 4 [ 1 1 − sin t − 1 1 + sin t − ln ( 1 − sin t ) + ln ( 1 + sin t ) ] + C =\tan t\sec t-\dfrac 14[\dfrac{1}{1-\sin t}-\dfrac{1}{1+\sin t}-\ln(1-\sin t)+\ln(1+\sin t)]+C =tantsect−41[1−sint1−1+sint1−ln(1−sint)+ln(1+sint)]+C
= 1 4 ( x 2 + 1 ) x 4 + 2 x 2 − 1 + 1 4 ln ( x 2 + 1 − x 4 + 2 x 2 − 1 ) − 1 4 ln ( x 2 + 1 + x 4 + 2 x 2 − 1 ) + C 1 \qquad\quad \ =\dfrac 14(x^2+1)\sqrt{x^4+2x^2-1}+\dfrac 14\ln(x^2+1-\sqrt{x^4+2x^2-1})-\dfrac 14\ln(x^2+1+\sqrt{x^4+2x^2-1})+C_1 =41(x2+1)x4+2x2−1+41ln(x2+1−x4+2x2−1)−41ln(x2+1+x4+2x2−1)+C1
= 1 4 ( x 2 + 1 ) x 4 + 2 x 2 − 1 − 1 2 ln ( x 2 + 1 + x 4 + 2 x 2 − 1 ) + C \qquad\quad \ =\dfrac 14(x^2+1)\sqrt{x^4+2x^2-1}-\dfrac 12\ln(x^2+1+\sqrt{x^4+2x^2-1})+C =41(x2+1)x4+2x2−1−21ln(x2+1+x4+2x2−1)+C
注:
- tan t sec t = 1 2 ( x 2 + 1 ) x 4 + 2 x 2 − 1 \tan t\sec t=\dfrac 12(x^2+1)\sqrt{x^4+2x^2-1} tantsect=21(x2+1)x4+2x2−1
- sin t = tan t sec t = ( x 2 + 1 ) x 4 + 2 x 2 − 1 \sin t=\dfrac{\tan t}{\sec t}=\dfrac{(x^2+1)}{\sqrt{x^4+2x^2-1}} sint=secttant=x4+2x2−1(x2+1)
- 最后一步根据平方差公式将 ln \ln ln值取反,然后会多一个常数,归到 C C C中即可
总结
在做这一类题的时候,要善于换元。因为有较大的计算量,所以要细心且有足够的耐心。不过,一般考试少有这类题目,所以了解即可,不必过多地钻研。
1万+

被折叠的 条评论
为什么被折叠?



