前置知识:第二类换元法
题1: 计算 ∫ 1 ( a 2 − x 2 ) 3 2 d x \int \dfrac{1}{(a^2-x^2)^{\frac 32}}dx ∫(a2−x2)231dx
解:
\qquad
令
x
=
a
sin
t
x=a\sin t
x=asint,
t
=
arcsin
x
a
t=\arcsin \dfrac xa
t=arcsinax,
d
x
=
a
cos
t
d
t
dx=a\cos tdt
dx=acostdt
\qquad 原式 = ∫ 1 ( a cos t ) 3 ⋅ a cos t d t = 1 a 2 ∫ 1 cos 2 t d t =\int\dfrac{1}{(a\cos t)^3}\cdot a\cos tdt=\dfrac{1}{a^2}\int\dfrac{1}{\cos^2 t}dt =∫(acost)31⋅acostdt=a21∫cos2t1dt
= 1 a 2 tan t + C = x a 2 a 2 − x 2 + C \qquad\qquad =\dfrac{1}{a^2}\tan t+C=\dfrac{x}{a^2\sqrt{a^2-x^2}}+C =a21tant+C=a2a2−x2x+C
题2: 计算 ∫ 1 x 2 1 + x 2 d x \int\dfrac{1}{x^2\sqrt{1+x^2}}dx ∫x21+x21dx
解:
\qquad
令
x
=
tan
t
x=\tan t
x=tant,
t
=
arctan
x
t=\arctan x
t=arctanx,
d
x
=
1
cos
2
t
d
t
dx=\dfrac{1}{\cos^2 t}dt
dx=cos2t1dt
\qquad 原式 = ∫ 1 tan 2 t ⋅ 1 cos t ⋅ 1 cos 2 t d t = ∫ 1 tan 2 t cos t d t =\int\dfrac{1}{\tan^2 t\cdot \frac{1}{\cos t}}\cdot \dfrac{1}{\cos^2 t}dt=\int\dfrac{1}{\tan^2 t\cos t}dt =∫tan2t⋅cost11⋅cos2t1dt=∫tan2tcost1dt
= ∫ 1 tan t ⋅ 1 sin t d t = ∫ cot t csc t d t \qquad\qquad =\int \dfrac{1}{\tan t}\cdot\dfrac{1}{\sin t}dt=\int \cot t \csc tdt =∫tant1⋅sint1dt=∫cottcsctdt
= − csc t + C = − 1 + cot 2 t + C \qquad\qquad =-\csc t+C=-\sqrt{1+\cot^2 t}+C =−csct+C=−1+cot2t+C
= − 1 + 1 x 2 + C = − x 2 + 1 x + C \qquad\qquad =-\sqrt{1+\frac{1}{x^2}}+C=-\dfrac{\sqrt{x^2+1}}{x}+C =−1+x21+C=−xx2+1+C
题3: 计算 ∫ 1 x 2 − a 2 d x \int \dfrac{1}{\sqrt{x^2-a^2}}dx ∫x2−a21dx
解:
\qquad
令
x
=
a
sec
t
x=a\sec t
x=asect,
d
x
=
a
sec
t
tan
t
d
t
dx=a\sec t\tan tdt
dx=asecttantdt
\qquad 原式 = ∫ 1 tan t ⋅ sec t tan t d t = ∫ sec t d t =\int\dfrac{1}{\tan t}\cdot \sec t\tan tdt=\int\sec tdt =∫tant1⋅secttantdt=∫sectdt
= ln ∣ sec t + tan t ∣ + C = ln ∣ x + x 2 − a 2 a ∣ + C \qquad\qquad =\ln|\sec t+\tan t|+C=\ln|\dfrac{x+\sqrt{x^2-a^2}}{a}|+C =ln∣sect+tant∣+C=ln∣ax+x2−a2∣+C
总结
要学会观察被积函数,遇到有根号且根号的形式为类似 a 2 ± x 2 \sqrt{a^2\pm x^2} a2±x2或 x 2 ± a 2 \sqrt{x^2\pm a^2} x2±a2的,一般都可以用三角代换来做。
博客围绕第二类换元法展开,给出三道积分计算题。通过令x等于不同三角函数进行换元求解,如令x = asint、x = tant、x = asect等。最后总结指出,遇到有根号且形式类似a2±x2或x2±a2的被积函数,一般可用三角代换解题。
1万+

被折叠的 条评论
为什么被折叠?



