前置知识:渐近线学习
求曲线 y = x e 2 x + 1 y=xe^{\frac 2x}+1 y=xex2+1的渐近线。
解:
\qquad
无定义点
x
=
0
x=0
x=0
lim x → 0 − f ( x ) = lim x → 0 − ( x e 2 x + 1 ) = 1 , lim x → 0 + f ( x ) = lim x → 0 + ( x e x 2 + 1 ) = + ∞ \qquad \lim\limits_{x\rightarrow0^-}f(x)=\lim\limits_{x\rightarrow0^-}(xe^{\frac 2x}+1)=1,\lim\limits_{x\rightarrow0^+}f(x)=\lim\limits_{x\rightarrow0^+}(xe^{\frac x2}+1)=+\infty x→0−limf(x)=x→0−lim(xex2+1)=1,x→0+limf(x)=x→0+lim(xe2x+1)=+∞
\qquad 所以竖直渐近线为 x = 0 x=0 x=0
lim x → ∞ f ( x ) = lim x → ∞ ( x e 2 x + 1 ) = ∞ \qquad \lim\limits_{x\rightarrow\infty}f(x)=\lim\limits_{x\rightarrow\infty}(xe^{\frac 2x}+1)=\infty x→∞limf(x)=x→∞lim(xex2+1)=∞,所以没有水平渐近线
k = lim x → ∞ f ( x ) x = lim x → ∞ x e 2 x + 1 x = lim x → ∞ ( e 2 x + 1 x ) = 1 \qquad k=\lim\limits_{x\rightarrow\infty}\dfrac{f(x)}{x}=\lim\limits_{x\rightarrow\infty}\dfrac{xe^{\frac 2x}+1}{x}=\lim\limits_{x\rightarrow\infty}(e^{\frac 2x}+\dfrac 1x)=1 k=x→∞limxf(x)=x→∞limxxex2+1=x→∞lim(ex2+x1)=1
b = lim x → ∞ [ f ( x ) − k x ] = lim x → ∞ x e 2 x + 1 − x = 1 + lim x → ∞ e ( e 2 x − 1 ) = 1 + lim x → ∞ 2 ⋅ 2 x = 1 + 2 = 3 \qquad b=\lim\limits_{x\rightarrow\infty}[f(x)-kx]=\lim\limits_{x\rightarrow\infty}xe^{\frac 2x}+1-x=1+\lim\limits_{x\rightarrow\infty}e(e^{\frac 2x}-1)=1+\lim\limits_{x\rightarrow\infty}2\cdot\dfrac 2x=1+2=3 b=x→∞lim[f(x)−kx]=x→∞limxex2+1−x=1+x→∞lime(ex2−1)=1+x→∞lim2⋅x2=1+2=3
\qquad 所以斜渐近线为 y = x + 3 y=x+3 y=x+3
\qquad 综上所述, y = x e 2 x + 1 y=xe^{\frac 2x}+1 y=xex2+1的渐近线有竖直渐近线 x = 0 x=0 x=0和斜渐近线 y = x + 3 y=x+3 y=x+3