C语言单链表实现19个功能完全详解

本文详细介绍了单链表的基本操作实现方法,包括初始化、创建、打印、清除等18种核心算法。通过具体实例展示了各函数的功能及使用场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

#include "stdio.h"
#include <stdlib.h>
#include "string.h"

typedef int elemType ;

/************************************************************************/
/*             以下是关于线性表链接存储(单链表)操作的18种算法        */

/* 1.初始化线性表,即置单链表的表头指针为空 */
/* 2.创建线性表,此函数输入负数终止读取数据*/
/* 3.打印链表,链表的遍历*/
/* 4.清除线性表L中的所有元素,即释放单链表L中所有的结点,使之成为一个空表 */
/* 5.返回单链表的长度 */
/* 6.检查单链表是否为空,若为空则返回1,否则返回0 */
/* 7.返回单链表中第pos个结点中的元素,若pos超出范围,则停止程序运行 */
/* 8.从单链表中查找具有给定值x的第一个元素,若查找成功则返回该结点data域的存储地址,否则返回NULL */
/* 9.把单链表中第pos个结点的值修改为x的值,若修改成功返回1,否则返回0 */
/* 10.向单链表的表头插入一个元素 */
/* 11.向单链表的末尾添加一个元素 */
/* 12.向单链表中第pos个结点位置插入元素为x的结点,若插入成功返回1,否则返回0 */
/* 13.向有序单链表中插入元素x结点,使得插入后仍然有序 */
/* 14.从单链表中删除表头结点,并把该结点的值返回,若删除失败则停止程序运行 */
/* 15.从单链表中删除表尾结点并返回它的值,若删除失败则停止程序运行 */
/* 16.从单链表中删除第pos个结点并返回它的值,若删除失败则停止程序运行 */
/* 17.从单链表中删除值为x的第一个结点,若删除成功则返回1,否则返回0 */
/* 18.交换2个元素的位置 */
/* 19.将线性表进行快速排序 */


/************************************************************************/
typedef struct Node{    /* 定义单链表结点类型 */
	elemType element;
	Node *next;
}Node;


/* 1.初始化线性表,即置单链表的表头指针为空 */
void initList(Node **pNode)
{
	*pNode = NULL;
	printf("initList函数执行,初始化成功\n");
}

/* 2.创建线性表,此函数输入负数终止读取数据*/
Node *creatList(Node *pHead)
{
	Node *p1;
	Node *p2;

	p1=p2=(Node *)malloc(sizeof(Node)); //申请新节点
	if(p1 == NULL || p2 ==NULL)
	{
		printf("内存分配失败\n");
		exit(0);
	}
	memset(p1,0,sizeof(Node));

	scanf("%d",&p1->element);    //输入新节点
	p1->next = NULL;         //新节点的指针置为空
	while(p1->element > 0)        //输入的值大于0则继续,直到输入的值为负
	{
		if(pHead == NULL)       //空表,接入表头
		{
			pHead = p1;
		}
		else               
		{
			p2->next = p1;       //非空表,接入表尾
		}
		p2 = p1;
		p1=(Node *)malloc(sizeof(Node));    //再重申请一个节点
		if(p1 == NULL)
		{
			printf("内存分配失败\n");
			exit(0);
		}
		memset(p1,0,sizeof(Node));
		scanf("%d",&p1->element);
		p1->next = NULL;
	}
	printf("creatList函数执行,链表创建成功\n");
	return pHead;           //返回链表的头指针
}

/* 3.打印链表,链表的遍历*/
void printList(Node *pHead)
{
	if(NULL == pHead)   //链表为空
	{
		printf("PrintList函数执行,链表为空\n");
	}
	else
	{
		while(NULL != pHead)
		{
			printf("%d ",pHead->element);
			pHead = pHead->next;
		}
		printf("\n");
	}
}

/* 4.清除线性表L中的所有元素,即释放单链表L中所有的结点,使之成为一个空表 */
void clearList(Node *pHead)
{
	Node *pNext;            //定义一个与pHead相邻节点

	if(pHead == NULL)
	{
		printf("clearList函数执行,链表为空\n");
		return;
	}
	while(pHead->next != NULL)
	{
		pNext = pHead->next;//保存下一结点的指针
		free(pHead);
		pHead = pNext;      //表头下移
	}
	printf("clearList函数执行,链表已经清除\n");
}

/* 5.返回单链表的长度 */
int sizeList(Node *pHead)
{
	int size = 0;

	while(pHead != NULL)
	{
		size++;         //遍历链表size大小比链表的实际长度小1
		pHead = pHead->next;
	}
	printf("sizeList函数执行,链表长度 %d \n",size);
	return size;    //链表的实际长度
}

/* 6.检查单链表是否为空,若为空则返回1,否则返回0 */
int isEmptyList(Node *pHead)
{
	if(pHead == NULL)
	{
		printf("isEmptyList函数执行,链表为空\n");
		return 1;
	}
	printf("isEmptyList函数执行,链表非空\n");

	return 0;
}

/* 7.返回单链表中第pos个结点中的元素,若pos超出范围,则停止程序运行 */
elemType getElement(Node *pHead, int pos)
{
	int i=0;

	if(pos < 1)
	{
		printf("getElement函数执行,pos值非法\n");
		return 0;
	}
	if(pHead == NULL)
	{
		printf("getElement函数执行,链表为空\n");
		return 0;
		//exit(1);
	}
	while(pHead !=NULL)
	{
		++i;
		if(i == pos)
		{
			break;
		}
		pHead = pHead->next; //移到下一结点
	}
	if(i < pos)                  //链表长度不足则退出
	{
		printf("getElement函数执行,pos值超出链表长度\n");
		return 0;
	}

	return pHead->element;
}

/* 8.从单链表中查找具有给定值x的第一个元素,若查找成功则返回该结点data域的存储地址,否则返回NULL */
elemType *getElemAddr(Node *pHead, elemType x)
{
	if(NULL == pHead)
	{
		printf("getElemAddr函数执行,链表为空\n");
		return NULL;
	}
	if(x < 0)
	{
		printf("getElemAddr函数执行,给定值X不合法\n");
		return NULL;
	}
	while((pHead->element != x) && (NULL != pHead->next)) //判断是否到链表末尾,以及是否存在所要找的元素
	{
		pHead = pHead->next;
	}
	if((pHead->element != x) && (pHead != NULL))
	{
		printf("getElemAddr函数执行,在链表中未找到x值\n");
		return NULL;
	}
	if(pHead->element == x)
	{
		printf("getElemAddr函数执行,元素 %d 的地址为 0x%x\n",x,&(pHead->element));
	}

	return &(pHead->element);//返回元素的地址
}

/* 9.把单链表中第pos个结点的值修改为x的值,若修改成功返回1,否则返回0 */
int modifyElem(Node *pNode,int pos,elemType x)
{
	Node *pHead;
	pHead = pNode;
	int i = 0;

	if(NULL == pHead)
	{
		printf("modifyElem函数执行,链表为空\n");
	}
	if(pos < 1)
	{
		printf("modifyElem函数执行,pos值非法\n");
		return 0;
	}
	while(pHead !=NULL)
	{
		++i;
		if(i == pos)
		{
			break;
		}
		pHead = pHead->next; //移到下一结点
	}
	if(i < pos)                  //链表长度不足则退出
	{
		printf("modifyElem函数执行,pos值超出链表长度\n");
		return 0;
	}
	pNode = pHead;
	pNode->element = x;
	printf("modifyElem函数执行\n");

	return 1;
}

/* 10.向单链表的表头插入一个元素 */
int insertHeadList(Node **pNode,elemType insertElem)
{
	Node *pInsert;
	pInsert = (Node *)malloc(sizeof(Node));
	memset(pInsert,0,sizeof(Node));
	pInsert->element = insertElem;
	pInsert->next = *pNode;
	*pNode = pInsert;
	printf("insertHeadList函数执行,向表头插入元素成功\n");

	return 1;
}

/* 11.向单链表的末尾添加一个元素 */
int insertLastList(Node **pNode,elemType insertElem)
{
	Node *pInsert;
	Node *pHead;
	Node *pTmp; //定义一个临时链表用来存放第一个节点

	pHead = *pNode;
	pTmp = pHead;
	pInsert = (Node *)malloc(sizeof(Node)); //申请一个新节点
	memset(pInsert,0,sizeof(Node));
	pInsert->element = insertElem;

	while(pHead->next != NULL)
	{
		pHead = pHead->next;
	}
	pHead->next = pInsert;   //将链表末尾节点的下一结点指向新添加的节点
	*pNode = pTmp;
	printf("insertLastList函数执行,向表尾插入元素成功\n");

	return 1;
}

/* 12.向单链表中第pos个结点位置插入元素为x的结点,若插入成功返回1,否则返回0 */


/* 13.向有序单链表中插入元素x结点,使得插入后仍然有序 */
/* 14.从单链表中删除表头结点,并把该结点的值返回,若删除失败则停止程序运行 */
/* 15.从单链表中删除表尾结点并返回它的值,若删除失败则停止程序运行 */
/* 16.从单链表中删除第pos个结点并返回它的值,若删除失败则停止程序运行 */
/* 17.从单链表中删除值为x的第一个结点,若删除成功则返回1,否则返回0 */
/* 18.交换2个元素的位置 */
/* 19.将线性表进行快速排序 */

/******************************************************************/
int main()
{
	Node *pList=NULL;
	int length = 0;

	elemType posElem;

	initList(&pList);       //链表初始化
	printList(pList);       //遍历链表,打印链表

	pList=creatList(pList); //创建链表
	printList(pList);

	sizeList(pList);        //链表的长度
	printList(pList);

	isEmptyList(pList);     //判断链表是否为空链表

	posElem = getElement(pList,3);  //获取第三个元素,如果元素不足3个,则返回0
	printf("getElement函数执行,位置 3 中的元素为 %d\n",posElem);  
	printList(pList);

	getElemAddr(pList,5);   //获得元素5的地址

	modifyElem(pList,4,1);  //将链表中位置4上的元素修改为1
	printList(pList);

	insertHeadList(&pList,5);   //表头插入元素5
	printList(pList);

	insertLastList(&pList,10);  //表尾插入元素10
	printList(pList);

	clearList(pList);       //清空链表
	system("pause");

}

内容概要:本文介绍了基于SMA-BP黏菌优化算法优化反向传播神经网络(BP)进行多变量回归预测的项目实例。项目旨在通过SMA优化BP神经网络的权重和阈值,解决BP神经网络易陷入局部最优、收敛速度慢及参数调优困难等问题。SMA算法模拟黏菌寻找食物的行为,具备优秀的全局搜索能力,能有效提高模型的预测准确性和训练效率。项目涵盖了数据预处理、模型设计、算法实现、性能验证等环节,适用于多变量非线性数据的建模和预测。; 适合人群:具备定机器学习基础,特别是对神经网络和优化算法有定了解的研发人员、数据科学家和研究人员。; 使用场景及目标:① 提升多变量回归模型的预测准确性,特别是在工业过程控制、金融风险管理等领域;② 加速神经网络训练过程,减少迭代次数和训练时间;③ 提高模型的稳定性和泛化能力,确保模型在不同数据集上均能保持良好表现;④ 推动智能优化算法与深度学习的融合创新,促进多领域复杂数据分析能力的提升。; 其他说明:项目采用Python实现,包含详细的代码示例和注释,便于理解和二次开发。模型架构由数据预处理模块、基于SMA优化的BP神经网络训练模块以及模型预测与评估模块组成,各模块接口清晰,便于扩展和维护。此外,项目还提供了多种评价指标和可视化分析方法,确保实验结果科学可信。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值