Write an efficient algorithm that searches for a value in an m x n matrix. This matrix has the following properties:
- Integers in each row are sorted in ascending from left to right.
- Integers in each column are sorted in ascending from top to bottom.
For example,
Consider the following matrix:
[ [1, 4, 7, 11, 15], [2, 5, 8, 12, 19], [3, 6, 9, 16, 22], [10, 13, 14, 17, 24], [18, 21, 23, 26, 30] ]
Given target = 5, return true.
Given target = 20, return false.
从右上角开始比较矩阵元素和target
1.如果target小于当前矩阵元素,则列减1,因为该元素是其所在列的最小元素,所以此列的剩余元素肯定不包含target
2.如果target大于当前矩阵元素,则行加1,因为该元素是其所在行的最大元素,所以此行的剩余元素肯定不包含target
Solution:
class Solution {
public:
bool searchMatrix(vector<vector<int>>& matrix, int target) {
int m=matrix.size(),n=matrix[0].size();
int i=0,j=n-1;
while(i < m && j >= 0){
int x=matrix[i][j];
if(x < target)
++i;
else if( x > target)
--j;
else
return true;
}
return false;
}
};

本文介绍了一种高效的算法,用于在一个特殊排列的二维矩阵中查找特定值。该矩阵的特点是每一行和每一列都按升序排列。文章提供了一个具体的示例,并详细解释了从右上角开始比较以逐步缩小搜索范围的策略。
231

被折叠的 条评论
为什么被折叠?



