Unique Paths II 包含障碍物,求所有的路径

本文介绍了一种使用动态规划解决网格中从起点到终点避开障碍物的路径计数问题的方法。该算法通过构建二维DP数组逐步计算每个格子可达路径的数量。
class Solution {
public:
    int uniquePathsWithObstacles(vector<vector<int> > &obstacleGrid) {
        int m=obstacleGrid.size();
        int n=obstacleGrid[0].size();
        vector<vector<int>> dp(m,vector<int>(n));
        dp[0][0]=obstacleGrid[0][0]==1?0:1;
        for(int i=1;i<m;i++)
        {
            dp[i][0]=obstacleGrid[i][0]==1?0:dp[i-1][0];
        }
        for(int j=1;j<n;j++)
        {
            dp[0][j]=obstacleGrid[0][j]==1?0:dp[0][j-1];
        }
        for(int i=1;i<m;i++)
        {
            for(int j=1;j<n;j++)
            {
                dp[i][j]=obstacleGrid[i][j]==1?0:dp[i-1][j]+dp[i][j-1];
            }
        }
        return dp[m-1][n-1];
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值