Graph Neural Network: A First Glance

本文深入探讨了图神经网络(GNN)的基本概念及其在图数据上的应用,对比了传统图卷积方法与GNN的区别,解析了GNN的不足及改进方案GGNN,强调了边权重的学习与更新在图表示学习中的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

@[TOC]GNN

Resources

从图(Graph)到图卷积(Graph Convolution):漫谈图神经网络模型 (一)

Vocabulary

  • Fixed Point Theorem : a convergency guarantee
  • Contraction Map
  • BP: Almeida-Pineda vs BPTT

Short Notes

  • To make f f f a Contraction Map: Penalize Jacobian Matrix of f f f over H H H. I.e. Bound its derivative.
  • GNN: stop when converged.
  • GNN drawbacks
    • Edges serve only as connections not learned
    • Not suitable for learning Graph Representation: all nodes share info with each other.
  • GGNN: replace convergent f f f with a Gated Unit like in RNN. Use BPTT instead of AP and can output before convergence. Edges now have weights that can be updated.

Q&A

  • From Tree to Graph: this is all?
  • Spectual Domain vs Spatial Domain
  • How to update weights
  • Attention
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值