SparkStreaming整合Kafka

本文介绍如何使用Java实现Spark Streaming与Kafka的整合,通过Receiver机制消费Kafka中的数据并进行实时处理。示例代码展示了配置Spark环境、创建输入流、处理消息等关键步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

package com.uplooking.bigdata.streaming.p2;

import org.apache.kafka.common.serialization.StringDeserializer;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.storage.StorageLevel;
import org.apache.spark.streaming.Durations;
import org.apache.spark.streaming.api.java.JavaDStream;
import org.apache.spark.streaming.api.java.JavaPairDStream;
import org.apache.spark.streaming.api.java.JavaPairReceiverInputDStream;
import org.apache.spark.streaming.api.java.JavaStreamingContext;
import org.apache.spark.streaming.kafka.KafkaUtils;
import org.apache.velocity.runtime.directive.MacroParseException;
import scala.Tuple2;

import java.util.Arrays;
import java.util.HashMap;
import java.util.Map;

/**
 * Java版本的Spark-Streaming和Kafka通过Reciver机制进行整合
 * 引入spark和kafka的maven依赖---->spark-streaming-kafka_2.10
 *
 * 消费Kafka中的topic:spark-kafka
 */
public class JavaSparkKafkaReceiverOps {

    public static void main(String[] args) {
        SparkConf conf = new SparkConf();
        conf.setMaster("local[2]");
        conf.setAppName(JavaSparkKafkaReceiverOps.class.getSimpleName());
        JavaSparkContext sc = new JavaSparkContext(conf);
        JavaStreamingContext jssc = new JavaStreamingContext(sc, Durations.seconds(2));
        /**
         * 通过ssc读取kafka中的数据
         * Create an input stream that pulls messages from Kafka Brokers.
         * @param ssc       StreamingContext object
         * @param zkQuorum  Zookeeper quorum (hostname:port,hostname:port,..)
         * @param groupId   The group id for this consumer
         * @param topics    Map of (topic_name -> numPartitions) to consume. Each partition is consumed
         *                  in its own thread
         * @param storageLevel  Storage level to use for storing the received objects
         *                      (default: StorageLevel.MEMORY_AND_DISK_SER_2)
         * @return DStream of (Kafka message key, Kafka message value)
         */
        String zkQuorum = "master:2181,slave01:2181,slave02:2181";
        String groupId = "spark-group-01";
        Map<String, Integer> topics = new HashMap<>();
        topics.put("spark-kafka", 1);
        /**
         * 返回值的第一列就是kafka中一条数据对应的key
         * 第二个参数就是key所对应的value
         */
        JavaPairReceiverInputDStream<String, String> inputDStream = KafkaUtils.createStream(jssc,
                zkQuorum,
                groupId,
                topics
        );


        JavaDStream<String> wordsDStream = inputDStream.flatMap(t -> {
            return Arrays.asList(t._2().split(" "));
        });
        JavaPairDStream<String, Integer> pairDStream = wordsDStream.mapToPair(word -> {
            return new Tuple2<String, Integer>(word, 1);
        });
        JavaPairDStream<String, Integer> retDS = pairDStream.reduceByKey((v1, v2) -> {
            return v1 + v2;
        });
        retDS.print();
        jssc.start();
        jssc.awaitTermination();
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值